1.太原理工大学 安全与应急管理工程学院,山西 太原 030024
2.山西格盟普丽环境股份有限公司 环境催化材料省技术创新中心,山西 晋中 030600
3.太原理工大学 环境科学与工程学院,山西 太原 030024
扫 描 看 全 文
HUANG Xin, JIAO Xi, HUANG Guobao, et al. Research progress on Pd-based catalysts for methane catalytic combustion. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):147-154(2023)
HUANG Xin, JIAO Xi, HUANG Guobao, et al. Research progress on Pd-based catalysts for methane catalytic combustion. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):147-154(2023) DOI: 10.12434/j.issn.2097-2547.20230233.
在“碳中和”和“碳达峰”背景下,甲烷无约束排放问题受到世界各国的极大关注。甲烷催化燃烧可在较低温度下将甲烷完全转化为二氧化碳,是一种高效、环保的净化技术。Pd基催化剂因具有良好的催化性能而应用于甲烷催化燃烧反应,但其催化寿命仍不能满足工业化应用要求。基于目前对甲烷催化燃烧反应的研究,结合2019—2023年发表的以“methane-combustion”为关键词的论文,对目前活性Pd物种(Pd、Pd,δ,+,、PdO和PdO-Pd)、载体种类(Al,2,O,3,、CeO,2,和分子筛)以及催化剂稳定性(抗烧结、抗水蒸气和抗SO,x,与H,2,S性能)的研究现状进行了总结,对甲烷催化燃烧的研究前景进行了展望,有助于推进环境的可持续发展和节能减排的目标。
In the context of “carbon peak” and “carbon neutral”, methane emission without restriction has received significant attention from countries around the world. Methane catalytic combustion can completely convert methane to carbon dioxide at a low temperature, which is an efficient and environmentally friendly purification technology. Pd-based catalysts are used in methane catalytic combustion due to the excellent catalytic performances, but their catalytic lifetime is still not satisfied with the requirement of industrial implication. Based on current research on methane catalytic combustion reactions, combined with papers published from 2019 to 2023 with the keyword “methane-combustion”, the active Pd species (Pd, Pd,δ,+, PdO and PdO-Pd), support types (Al,2,O,3, CeO,2 ,and molecular sieves) and catalytic stability (sintering resistance, water vapor resistance and SO,x, and H,2,S resistance) were reviewed, and the research prospects of methane catalytic combustion were prospected, which helps to promote sustainable environmental development of environment and the goal of energy conservation and emission reduction.
甲烷催化燃烧钯活性位载体催化剂稳定性
methane catalytic combustionpalladiumactive centerssupportcatalyst stability
LAUVAUX T, GIRON C, MAZZOLINI M, et al. Global assessment of oil and gas methane ultra-emitters [J]. Science, 2022, 375(6580): 557-561.
International Energy Agency. Global methane tracker 2022 [R]. Paris, 2022.
LI T Y, YAO Y G, HUANG Z N, et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion [J]. Nat Catal, 2021, 4: 62-70.
WANG X B, ZHANG X Q, CAO M M, et al. Ordered mesoporous Pd-La/Al2O3 catalysts for enhanced methane combustion [J]. Energy Fuels, 2022, 36(13): 6999-7005.
TANG Z Y, ZHANG T, LUO D C, et al. Catalytic combustion of methane: From mechanism and materials properties to catalytic performance [J]. ACS Catal, 2022, 12(21): 13457-13474.
FENG X B, JIANG L, LI D Y, et al. Progress and key challenges in catalytic combustion of lean methane [J]. J Energy Chem, 2022, 75: 173-215.
CHEN H Y, LU J, FEDEYKO J M, et al. Zeolite supported Pd catalysts for the complete oxidation of methane: A critical review [J]. Appl Catal A, 2022, 633: 118534.
蔡洁莹, 李杰, 张燕, 等. 甲烷燃烧催化剂研究进展[J]. 能源环境保护, 2023, 37(2): 62-72.
MORTENSEN R L, NOACK H D, PEDERSEN K, et al. Recent advances in complete methane oxidation using zeolite-supported metal nanoparticles catalysts [J]. ChemCatChem, 2022, 14(16): 202101924.
STOIAN M, ROGÉ V, LAZAR L, et al. Total oxidation of methane on oxide and mixed oxide ceria-containing catalysts [J]. Catalysts, 2021, 11(4): 427.
QIU R S, WANG W, WANG Z, et al. Advancement of modification engineering in lean methane combustion catalysts based on defect chemistry [J]. Catal Sci Technol, 2023, 13(8): 2556-2584.
楚培齐, 王赛飞, 赵世广, 等. 甲烷催化燃烧反应机理及催化剂研究进展[J]. 燃料化学学报, 2022, 50(2): 180-194.
黄鑫, 潘秀莲, 包信和. 甲烷直接转化制高值化学品的研究进展[J]. 低碳化学与化工, 2023, 48(1): 1-8.
MATAM S K, AGUIRRE M H, WEIDENKAFF A, et al. Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by operando XANES in a lab-scale fixed-bed reactor [J]. J Phys Chem C, 2010, 114: 9439-9443.
YANG N T, ZHAO Y H, ZHANG H, et al. Sintering activated atomic palladium catalysts with high-temperature tolerance of ~1000 ℃ [J]. Cell Rep Phys Sci, 2021, 2(1): 100287.
PENG H G, DONG T, YANG S Y, et al. Intra-crystalline mesoporous zeolite encapsulation derived thermally robust metal nanocatalyst in deep oxidation of light alkanes [J]. Nat Commun, 2022, 13(1): 295.
YANG J Y, PENG M, REN G Q, et al. A hydrothermally stable irreducible oxide-modified Pd/MgAl2O4 catalyst for methane combustion [J]. Angew Chem Int Ed, 2020, 59(42): 18522-18526.
DANIELIS M, DIVINS N J, LLORCA J, et al. In situ investigation of the mechanochemically promoted Pd-Ce interaction under stoichiometric methane oxidation conditions [J]. EES Catal, 2023, 1: 144-152.
MURAVEV V, PARASTAEV A, BOSCH Y, et al. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts [J]. Science, 2023, 380(6650): 1174-1179.
MURATA K, KOSUGE D, OHYAMA J, et al. Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion [J]. ACS Catal, 2020, 10(2): 1381-1387.
HUANG W X, JOHNSTON-PECK A C, WOLTER T, et al. Steam-created grain boundaries for methane C—H activation in palladium catalysts [J]. Science, 2021, 373(6562): 1518-1523.
YANG X W, LI Q, LU E J, et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports [J]. Nat Commun, 2019, 10(1): 1611.
HOU Z Q, DAI L Y, DENG J G, et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst [J]. Angew Chem Int Ed, 2022, 61(27): 202201655.
LIU Z, XU G Y, ZENG L Y, et al. Anchoring Pt-doped PdO nanoparticles on γ-Al2O3 with highly dispersed La sites to create a methane oxidation catalyst [J]. Appl Catal B, 2023, 324: 122259.
CHEN J J, ZHONG J W, WU Y, et al. Particle size effects in stoichiometric methane combustion: Structure-activity relationship of Pd catalyst supported on gamma-alumina [J]. ACS Catal, 2020, 10(18): 10339-10349.
DUAN H M, YOU R, XU S T, et al. Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion [J]. Angew Chem Int Ed, 2019, 58(35): 12043-12048.
YANG W W, POLO-GARZON F, ZHOU H, et al. Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion [J]. Angew Chem Int Ed, 2023, 62(5): 202217323.
XIONG H F, KUNWAR D, JIANG D, et al. Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation [J]. Nat Catal, 2021, 4(10): 830-839.
ZHAO H, TAN Y L, LI L, et al. Reaction gas-induced partial exsolution of Pd from PdCeMnO for methane combustion [J]. Chem Eng J, 2023, 451: 138937.
DANIELIS M, BETANCOURT L, OROZCO I, et al. Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria [J]. Appl Catal B, 2021, 282: 119567.
WANG W Y, ZHOU W, LI W, et al. In situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability [J]. Appl Catal B, 2020, 276: 119142.
LI T, BECK A, KRUMEICH F, et al. Stable palladium oxide clusters encapsulated in Silicalite-1 for complete methane oxidation [J]. ACS Catal, 2021, 11(12): 7371-7382.
HOSSEINIAMOLI H, SETIAWAN A, ADESINA A, et al. The stability of Pd/TS-1 and Pd/Silicalite-1 for catalytic oxidation of methane-understanding the role of titanium [J]. Catal Sci Technol, 2020, 10(4): 1193-1204.
NIU R Y, LIU P C, LI W, et al. High performance for oxidation of low-concentration methane using ultra-low Pd in Silicalite-1 zeolite [J]. Microporous Mesoporous Mater, 2019, 284: 235-240.
LOSCH P, HUANG W X, VOZNIUK O, et al. Modular Pd/zeolite composites demonstrating the key role of support hydrophobic/hydrophilic character in methane catalytic combustion [J]. ACS Catal, 2019, 9(6): 4742-4753.
HUANG X, ZHANG X Q, DENG C B, et al. Boosting methane catalytic combustion by confining PdO-Pd interfaces in zeolite nanosheets [J]. Fuel, 2023, 344: 127693.
HUANG X, JIAO X, LI M G, et al. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization [J]. Catal Sci Technol, 2018, 8(22): 5740-5749.
MARTÍN A J, MITCHELL S, MONDELLI C, et al. Unifying views on catalyst deactivation [J]. Nat Catal, 2022, 5: 854-866.
PETROV A W, FERRI D, KRUMEICH F, et al. Stable complete methane oxidation over palladium based zeolite catalysts [J]. Nat Commun, 2018, 9: 2545.
CARGNELLO M, JAÉN J J D, GARRIDO J C H, et al. Exceptional activity for methane combustion over modular Pd@CeO2 submits on functionalized Al2O3 [J]. Science, 2012, 337(6095): 713-717.
GOODMAN E D, JOHNSTON-PECK A C, DIETZE E M, et al. Catalysts deactivation via decomposition into single atoms and the role of metal loading [J]. Nat Catal, 2019, 2: 748-755.
LI X S, WANG X, ROY K, et al. Role of water on the structure on palladium for complete oxidation of methane [J]. ACS Catal, 2020, 10(10): 5783-5792.
DIVINS N J, BRAGA A, VENDRELL X, et al. Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation [J]. Nat Commun, 2022, 13(1): 5080.
CUI Y R, CHEN J Z, PENG B, et al. Onset of high methane combustion rates over supported palladium catalysts: From isolated Pd cations to PdO nanoparticles [J]. J Am Chem Soc, 2021, 1(4): 396-408.
LOTT P, ECK M, DORONKIN D E, et al. Regeneration of sulfur poisoned Pd-Pt/CeO2-ZrO2-Y2O3-La2O3 and Pd-Pt/Al2O3 methane oxidation catalysts [J]. Top Catal, 2019, 62: 164-171.
LOTT P, ECK M, DORONKIN D E, et al. Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration [J]. Appl Catal B, 2020, 278: 119144.
0
Views
5
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution