浏览全部资源
扫码关注微信
中海石油气电集团有限责任公司,北京100028
Published:25 February 2024,
Received:15 June 2023,
Revised:24 August 2023,
扫 描 看 全 文
秦锋,陈海平,明红芳等.基于LNG冷能的膜-深冷分离碳捕集耦合系统工艺模拟与分析[J].低碳化学与化工,2024,49(02):96-104.
QIN Feng,CHEN Haiping,MING Hongfang,et al.Process simulation and analysis of membrane-cryogenic separation carbon capture coupling system based on LNG cool energy[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):96-104.
秦锋,陈海平,明红芳等.基于LNG冷能的膜-深冷分离碳捕集耦合系统工艺模拟与分析[J].低碳化学与化工,2024,49(02):96-104. DOI: 10.12434/j.issn.2097-2547.20230219.
QIN Feng,CHEN Haiping,MING Hongfang,et al.Process simulation and analysis of membrane-cryogenic separation carbon capture coupling system based on LNG cool energy[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):96-104. DOI: 10.12434/j.issn.2097-2547.20230219.
开发经济、高效和节能的碳捕集工艺,是碳捕集、利用与封存技术的重点研究方向之一。针对低浓度(体积分数小于12%)CO
2
烟气,提出了一种基于液化天然气(LNG)冷能的膜-深冷分离碳捕集耦合系统工艺,弥补了采用单一碳捕集技术的缺陷,并利用了LNG蕴含的冷能,有望实现更低能耗的CO
2
捕集。利用Aspen Plus软件对该工艺进行了模拟,对影响系统性能的关键参数(液化温度、压缩压力和渗透气CO
2
浓度等)进行了灵敏度分析,并开展了相关实验研究。结果表明,模拟结果与实验结果具有较好的一致性,利用该工艺可以得到符合工程或商业应用要求的液态CO
2
产品;工艺CO
2
捕集率与产品纯度随液化温度和压缩压力呈趋势相反的变化,即随着液化温度的降低或者压缩压力的提高,CO
2
捕集率增加,但产品纯度降低;在达到工艺指标要求(CO
2
捕集率大于等于85%、产品纯度大于等于90%)的前提下,工艺最低CO
2
捕集能耗为2.183 MJ/kg(即捕集1 kg CO
2
的能耗为2.183 MJ)。本研究为从低浓度CO
2
烟气中分离回收CO
2
提供了新思路。
Developing an economical
efficient and energy-saving carbon capture process is one of the key research directions in carbon capture
utilization
and storage technology. A coupling system process for carbon capture based on liquefied natural gas (LNG) cold energy was proposed to address low-concentration (volume fraction less than 12%) CO
2
flue gas. The process combines membrane separation and cryogenic separation
compensating for the shortcomings of using a single carbon capture technology. It also utilizes the cold energy inherent in LNG
which holds the potential for achieving lower energy cons
umption in CO
2
capture. The process was simulated by Aspen Plus software
and sensitivity analysis was conducted on key parameters affecting system performance
such as liquefaction temperature
compression pressure
and permeate gas CO
2
concentration. Experimental research was also carried out to validate the simulation results. The results indicate good consistency between simulation and experimental data
showing that the proposed process can provide liquid CO
2
products that meet engineering or commercial application requirements. The carbon capture rate and product purity exhibit an inversely related trend with liquefaction temperature and compression pressure. In other words
as the liquefaction temperature decreases or the compression pressure increases
the carbon capture rate increases while product purity decreases. Under the premise of meeting the process’s target requirements (carbon capture rate greater than or equal to 85%
product purity greater than or equal to 90%)
the lowest energy consumption for carbon capture in the process is 2.183 MJ/kg (the energy required to capture 1 kg of CO
2
is 2.183 MJ). This study provides a novel approach to separate and recover CO
2
from low-concentration CO
2
flue gas.
碳捕集膜分离CO2液化LNG冷能耦合工艺
carbon capturemembrane separationCO2 liquefactionLNG cooling energycoupling system
TAN Y T, NOOKUEA W, LI H L, et al. Property impacts on Carbon Capture and Storage (CCS) processes: A review [J]. Energy Conversion and Management, 2016, 118: 204-222.
NAN W, YUE S, HUANG H, et al. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China [J]. Journal of Integrative Agriculture, 2016, 15(2): 451-464.
陆诗建, 张娟娟, 刘玲, 等. 工业源二氧化碳捕集技术进展与发展趋势[J]. 现代化工, 2022, 42(11): 59-64.
LU S J, ZHANG J J, LIU L, et al. Progress and development trend of industry-sourced carbon dioxide capture technology [J]. Modern Chemical Industry, 2022, 42(11): 59-64.
ZHAO L, PRIMABUDI E, STOLTEN D. Investigation of a hybrid system for post-combustion capture [J]. Energy Procedia, 2014, 63: 1756-1772.
AMROLLAHI Z, YSTAD P A M, ERTESVAG I S, et al. Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant—Power plant efficiency analysis [J]. International Journal of Greenhouse Gas Control, 2012, 8: 1-11.
郜时旺, 蔡铭, 黄斌, 等. 燃煤电厂二氧化碳捕集技术研究进展[C]//二氧化碳减排控制技术与资源化利用研讨会论文集. 2009: 9-13.
GAO S W, CAI M, HUANG B, et al. Research progress on carbon dioxide capture technology in coal-fired power plant [C]//Proceedings of The Symposium on Carbon Dioxide Emission Reduction Control Technology and Resource Utilization. 2009: 9-13.
WILBERFORCE T, OLABI A G, SAYED E T, et al. Progress in carbon capture technologies [J]. Science of The Total Environment, 2021, 761: 143203.
DORTMUNDT D, DOSHI K. CO2 removal membrane technology: Recent development [J]. Chemical Engineering World, 2003, 38(9): 55-66.
BERSTAD D, ANANTHARAMAN R, NEKSA P. Low-temperature CO2 capture technologies—Applications and potential [J]. International Journal of Refrigeration, 2013, 36(5): 1403-1416.
田华, 孙瑞, 宋春风, 等. 耦合膜分离的新型CO2低温捕集系统性能优化[J]. 化工进展, 2020, 39(7): 2884-2892.
TIAN H, SUN R, SONG C F, et al. Optimization of novel hybrid cryogenic CO2 capture process with membrane separation [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2884-2892.
MAT N C, LIPSCOMB G G. Global sensitivity analysis for hybrid membrane-cryogenic post combustion carbon capture process [J]. International Journal of Greenhouse Gas Control, 2019, 81: 157-169.
ZHANG X P, SINGH B, HE X H, et al. Post-combustion carbon capture technologies: Energetic analysis and life cycle assessment [J]. International Journal of Greenhouse Gas Control, 2014, 27: 289-298.
BELAISSAOUI B, LE MOULLEC Y, WILLSON D, et al. Hybrid membrane cryogenic process for post-combustion CO2 capture [J]. Journal of Membrane Science, 2012, 415: 424-434.
吴小华, 蔡磊, 李庭宇, 等. LNG冷能利用技术的最新进展[J]. 油气储运, 2017, 36(6): 624-635.
WU X H, CAI L, LI T Y, et al. Latest progress of LNG cold energy utilization technology [J]. Oil & Gas Storage and Transportation, 2017, 36(6): 624-635.
熊永强, 华贲, 贾德民. 以冷媒为介质的液化天然气冷能利用系统[J]. 现代化工, 2009, 29(3): 72-76.
XIONG Y Q, HUA B, JIA D M, et al. Cold energy utilization system of LNG with a cooling medium [J]. Modern Chemical Industry, 2009, 29(3): 72-76.
ASIF M, SULEMAN M, HAQ I, et al. Post-combustion CO2 capture with chemical absorption and hybrid system: Current status and challenges [J]. Greenhouse Gases: Science and Technology, 2018, 8(6): 998-1031.
MERKEL T C, LIN H, WEI X, et al. Power plant post-combustion carbon dioxide capture: An opportunity for membranes [J]. Journal of Membrane Science, 2010, 359(1/2): 126-139.
武鲁航. 燃煤电厂烟气CO2膜分离工艺模拟研究[D]. 青岛: 青岛科技大学, 2017.
WU L H. Simulation for CO2 capture by using membrane gas sepration from fluegas in power plant [D]. Qingdao: Qingdao University of Science and Technology, 2017.
ZHAO L, RIENSCHE E, MENZER R, et al. A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture [J]. Journal of Membrane Science, 2008, 325(1): 284-294.
BOUNACEUUR R, LAPE N, ROIZARD D, et al. Membrane processes for post-combustion carbon dioxide capture: A parametric study [J]. Energy, 2006, 31(14): 2556-2570.
SONG C F, LIU Q L, JI N, et al. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization [J]. Energy, 2017, 124: 29-39.
ZHAI H, RUBIN E S. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants [J]. Environmental Science & Technology, 2013, 47(6): 3006-3014.
上接第73页)
GUO S, WU Y S, JIN T, et al. Controllable alkylation of benzene with mixed olefins for producing C8-C15 aromatics in jet fuel [J]. Fuel, 2020, 275: 117890.
侯焕娣, 黄崇品, 陈标华. 纳米Zn/HZSM-5分子筛催化丙烷芳构化[J]. 化学反应工程与工艺, 2006, (4): 300-304.
HOU H D, HUANG C P, CHEN B H. Aromatization of propane over nanosized Zn/HZSM-5 zeolite [J]. Chemical Reaction Engineering and Technology, 2006, (4): 300-304.
SHEN K, WANG N, CHEN X D, et al. Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: Toward efficient and cost-effective catalysts for the MTA reaction [J]. Catalysis Science & Technology, 2017, 7: 5143-5153.
XUE T, DONG L L, ZHANG Y, et al. Green and cost-effective preparation of small-sized ZSM-5 [J]. Acta Physico-Chimica Sinica, 2018, 34(8): 920-926.
DAI C, LI J J, ZHANG A, et al. Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization [J]. 2017, 7: 37915-37922.
SU X F, ZAN W, BAI X F, et al. Synthesis of microscale and nanoscale ZSM-5 zeolites: Effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance [J]. Catalysis Science & Technology, 2017, (9):1943-1952.
WU G, WU W, WANG X, et al. Nanosized ZSM-5 zeolites: Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene [J]. Microporous & Mesoporous Materials, 2013, 180: 187-195.
杨文建, 孟广莹, 李晓云, 等. 球形ZSM-5分子筛催化剂的制备及其在甲醇制芳烃反应中的应用[J]. 石油炼制与化工, 2017, 48(4): 87-91.
YANG W J, MENG G Y, LI X YU, et al. Preparation of spherical ZSM-5 zeolite catalyst and its application in MTA process [J]. Petroleum Processing and Petrochemicals, 2017, 48(4): 87-91.
SONG Y, XU Y B, SUZUKI Y, et al. A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K [J]. Applied Catalysis A: General, 2014, 482: 387-396.
0
Views
289
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution