1.西安交通大学 能源与动力工程学院, 陕西 西安 710049
扫 描 看 全 文
FENG Jingwu, WANG Yibin, MA Jiahui, et al. Absorption-mineralization performance of CO2 by mixed alcohol amine solution coupled with purified dusts from calcium carbide furnace. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):125-134(2023)
FENG Jingwu, WANG Yibin, MA Jiahui, et al. Absorption-mineralization performance of CO2 by mixed alcohol amine solution coupled with purified dusts from calcium carbide furnace. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):125-134(2023) DOI: 10.12434/j.issn.2097-2547.20230196.
针对醇胺吸收法中富CO,2,吸收液的解吸封存问题,详细探究了乙醇胺(MEA)与N,N-二甲基乙醇胺(DMEA)混合溶液耦合电石炉净化灰吸收-矿化CO,2,的潜力,并同等添加比例(,n,(CO,2,):,n,(Ca) = 1.0:1.0)下CaO、Ca(OH),2,的CO,2,矿化性能进行了对比。实验结果表明,配比为1.5 mol/L MEA + 1.5 mol/L DMEA的混合醇胺溶液的CO,2,吸收负荷和解吸率最大,分别为1.807 mol/L和82.78%;经过4次吸收-解吸循环后其CO,2,吸收性能有所下降,但4次循环后CO,2,吸收负荷仍有0.950 mol/L,利用电石炉净化灰可有效解吸封存MEA/DMEA混合醇胺溶液吸收的CO,2,。电石炉净化灰的解吸性能接近CaO但优于Ca(OH),2,,所得矿化产物包括文石、球霰石和方解石型碳酸钙。这主要由于活性含钙物质可以向富CO,2,溶液中释放Ca,2+,和OH,-,,继而同溶液中CO,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103359&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103372&type=,2.28600001,3.72533321,和HCO,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103362&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103360&type=,1.10066664,3.72533321,反应生成CaCO,3,沉淀,并中和质子化胺MEAH,+,/DMEAH,+,,同时实现CO,2,矿化和混合醇胺溶液的再生。
To address the problem of desorption and sequestration of CO,2,-rich absorption solution in the alcoholamine absorption method, the potential of absorption-mineralization of CO,2, from mixed solution of ethanolamine (MEA) and N,N-dimethylethanolamine (DMEA) which coupled with purified dusts from calcium carbide furnace was investigated in detail. And the CO,2, mineralization performance of this purified dust was compared with that of CaO and Ca(OH),2, at an equal adding proportion (,n,(CO,2,):,n,(Ca) = 1.0:1.0). The experimental results show that the CO,2, absorption loads and desorption rate are the largest with the 1.5 mol/L MEA + 1.5 mol/L DMEA mixed solution, which are respectively 1.807 mol/L and 82.78%. The CO,2, absorption performance decreases after four absorption-desorption cycles, but still has the CO,2, absorption loads of 0.950 mol/L. The CO,2, absorbed by MEA/DMEA mixed solution can be effectively desorbed and stored by purified dusts from calcium carbide furnace. The desorption performance of purified dusts from calcium carbide furnace for CO,2, rich solution is similar to that of CaO but better than that of Ca(OH),2,. The mineralization products consist three types of calcium carbonate which are aragonite, sphalerite and calcite. This is mainly due to the fact that the active calcium-containing components can release Ca,2+, and OH,-, into the CO,2, rich solution, and then they react with CO,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103364&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103380&type=,2.37066650,3.55599999, and HCO,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103398&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49103385&type=,1.10066664,3.55599999, in the solution to form CaCO,3, neutralize the protonated amine MEAH,+,/DMEAH,+,. Finally, CO,2, mineralization and alcoholamine solution regeneration are achieved simultaneously.
CO2吸收混合醇胺解吸碱性固废矿化
CO2 absorptionmixed alcohol aminedesorptionalkaline solid wastemineralization
刘明亮, 卫浩, 盖玉龙, 等. 中国、美国、欧盟及世界一次能源消费现状与展望[J]. 煤化工, 2022, 50(2): 1-5.
IEA. CO2 emissions in 2022 [EB/OL]. (2023-03-02)[2023-03-15]. https://www.iea.org/reports/co2-emissions-in-2022https://www.iea.org/reports/co2-emissions-in-2022.
康顺吉, 沈喜洲, 向丽. MDEA及其复合胺溶液对CO2吸收与解吸研究进展[J]. 天然气化工—C1化学与化工, 2019, 44(4): 124-130.
林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886.
杨菲, 刘苗苗, 陆诗建, 等. 适用于烟气CO2捕集的相变吸收剂研究进展[J]. 低碳化学与化工, 2023, 48(2): 113-120.
MANZOLINI G, SANCHEZ F E, REZVANI S, et al. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology [J]. Appl Energy, 2015, 138: 546-558.
王中辉, 苏胜, 尹子骏, 等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327.
ARTI M, YOUN M H, PARK K T, et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride [J]. Energy Fuels, 2017, 31(1): 763-769.
马伟春, 张卫风, 焦月潭, 等. 钙法解吸并固定乙醇胺富液中CO2[J]. 环境科学学报, 2018, 38(1): 109-114.
YU B, YU H, LI K K, et al. Integration of a diamine solvent based absorption and coal fly ash based mineralisation for CO2 sequestration [J]. Fuel Process Technol, 2019, 192: 220-226.
张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507.
平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983.
ZHANG W F, LI J, WANG Q H, et al. Desorption and mineralization of CO2 in amine-based solution by Ca(OH)2 [J]. Int J Greenh Gas Control, 2020, 97: 103056.
王中辉, 苏胜, 马智伟, 等. 混合胺溶液耦合CaO吸收-矿化CO2特性及矿化过程关键影响因素研究[J]. 燃料化学学报, 2022, 50(10): 1371-1380.
王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3): 1572-1582.
王晓龙, 郜时旺, 刘练波, 等. 捕集并利用燃煤电厂二氧化碳生产高附加值产品的新工艺[J]. 中国电机工程学报, 2012, 32(S1): 164-167.
LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: A review of recent developments [J]. Chem Eng J, 2021, 416: 129093.
JI L, YU H, YU B, et al. Integrated absorption-mineralisation for energy-efficient CO2 sequestration: Reaction mechanism and feasibility of using fly ash as a feedstock [J]. Chem Eng J, 2018, 352: 151-162.
JI L, ZHENG X, ZHANG L, et al. Feasibility and mechanism of an amine-looping process for efficient CO2 mineralization using alkaline ashes [J]. Chem Eng J, 2022, 430: 133118.
CONWAY W, BRUGGINK S, BEYAD Y, et al. CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes [J]. Chem Eng Sci, 2015, 126: 446-454.
CHOWDHURY F A, YAMADA H, HIGASHII T, et al. CO2 capture by tertiary amine absorbents: A performance comparison study [J]. Ind Eng Chem Res, 2013, 52(24): 8323-8331.
王萌, 王毅斌, 谭厚章, 等. 工业高碳富钙型灰对准东混煤结渣特性的影响[J]. 燃料化学学报, 2021, 49(1): 1-10.
YAN S P, FANG M X, LUO Z Y, et al. Regeneration of CO2 from CO2-rich alkanolamines solution by using reduced thickness and vacuum technology: Regeneration feasibility and characteristic of thin-layer solvent [J]. Chem Eng Process Intensif, 2009, 48(1): 515-523.
JI L, YU H, LI K K, et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration [J]. Appl Energy, 2018, 225: 356-366.
ZHANG P B, XU R L, LI H P, et al. Mass transfer performance for CO2 absorption into aqueous blended DMEA/MEA solution with optimized molar ratio in a hollow fiber membrane contactor [J]. Sep Purif Technol, 2019, 211: 628-636.
JIANG W S, LUO X, GAO H X, et al. A comparative kinetics study of CO2 absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions [J]. AIChE J, 2018, 64(4): 1350-1358.
HUANG Y X, ZHENG X, WEI Y B, et al. Protonated amines mediated CO2 mineralization of coal fly ash and polymorph selection of CaCO3 [J]. Chem Eng J, 2022, 450: 138121.
RICHNER G, PUXTY G. Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR [J]. Ind Eng Chem Res, 2012, 51(44): 14317-14324.
DANCKWERTS P V. The reaction of CO2 with ethanolamines [J]. Chem Eng Sci, 1979, 34(4): 443-446.
DONALDSON T L, NGUYEN Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes [J]. Ind Eng Chem Fundam, 1980, 19(3): 260-266.
YU B, LI K K, JI L, et al. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: A high energy-saving process for CO2 absorption and sequestration [J]. Int J Greenh Gas Control, 2019, 87: 58-65.
WANG Y, SONG L, MA K. An integrated absorption-mineralization process for CO2 capture and sequestration: Reaction mechanism, recycling stability, and energy evaluation [J]. ACS Sustainable Chem Eng, 2021, 9(49): 16577-16587.
LI K K, LEIGH W, FERON P, et al. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements [J]. Appl Energy, 2016, 165: 648-659.
0
Views
2
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution