浏览全部资源
扫码关注微信
1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
2.太原理工大学 化学工程与技术学院,山西 太原 030024
3.山西潞安碳一化工有限公司,山西 长治 046100
Published:25 February 2024,
Received:20 May 2023,
Revised:01 June 2023,
扫 描 看 全 文
靳钰婷,郭宇伟,权燕红等.助剂对球形Cu/SiO2催化剂甲醇脱氢制甲酸甲酯反应性能的影响[J].低碳化学与化工,2024,49(02):17-25.
JIN Yuting,GUO Yuwei,QUAN Yanhong,et al.Influence of additives on catalytic performance of spherical Cu/SiO2 catalyst for dehydrogenation of methanol to methyl formate[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):17-25.
靳钰婷,郭宇伟,权燕红等.助剂对球形Cu/SiO2催化剂甲醇脱氢制甲酸甲酯反应性能的影响[J].低碳化学与化工,2024,49(02):17-25. DOI: 10.12434/j.issn.2097-2547.20230188.
JIN Yuting,GUO Yuwei,QUAN Yanhong,et al.Influence of additives on catalytic performance of spherical Cu/SiO2 catalyst for dehydrogenation of methanol to methyl formate[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):17-25. DOI: 10.12434/j.issn.2097-2547.20230188.
甲醇脱氢制甲酸甲酯是实现甲醇下游产品多元化利用的绿色高效途径,使用助剂对SiO
2
催化剂进行改性已成为提高目标产物甲酸甲酯收率的有效策略。首先通过溶胶-凝胶法制备了球形SiO
2
负载Cu催化剂(Cu/SiO
2
),然后采用旋蒸法引入助剂制得CuM/SiO
2
(M = Ce或Al)催化剂,借助N
2
吸/脱附、扫描电子显微镜(SEM)、H
2
-N
2
O滴定和X射线衍射(XRD)等手段对催化剂进行了表征,并将催化剂用于甲醇脱氢制甲酸甲酯反应评价了其催化性能。结果表明,助剂可改变催化剂中活性Cu
0
物种的含量和表面酸碱性。与Cu/SiO
2
催化剂相比,CuCe/SiO
2
催化剂表面Cu颗粒的分散度提高,这促进了活性物种Cu
0
的形成,同时表面碱性位点减少,抑制了副反应发生,因而CuCe/SiO
2
催化剂表现出最高的活性。在300 ℃、0.2 MPa的反应条件下,CuCe/SiO
2
催化剂的甲醇转化率、甲酸甲酯选择性分别为29.2%、86.3%,甲酸甲酯收率为25.2%,均明显优于文献报道的Cu基催化剂。
Methanol dehydrogenation to methyl formate is a green and efficient way to diversify methanol downstream products. The modification of Cu/SiO
2
catalyst with additive has become an effective strategy to increase the yield of the target product methyl formate. Firstly
spherical SiO
2
supported Cu catalyst (Cu/SiO
2
) was prepared by the sol-gel method
and then a series of CuM/SiO
2
(M = Ce or Al) catalysts were obtained through the introduction of additive to Cu/SiO
2
via the rotary evaporation method. The catalysts were characterized by N
2
absorption/desorption
scanning electron microscopy (SEM)
H
2
-N
2
O titration
X-ray diffraction (XRD) and so on
and their catalytic performances were evaluated for the reaction of methanol dehydrogenation to methyl formate. The results show that the additive can change the content of active Cu
0
species and the surface acidity of the catalysts. Compared with the Cu/SiO
2
catalyst
the
dispersion of Cu particles on the surface of CuCe/SiO
2
catalyst is increased
which promotes the formation of the active species Cu
0
while the surface alkaline site is reduced
which inhibits the occurrence of side reactions
and thus exhibits the highest activity. Under the reaction conditions of 300 °C and 0.2 MPa
the methanol conversion rate and the selectivity of methyl formate of CuCe/SiO
2
catalyst are 29.2% and 86.3%
respectively
and the yield of methyl formate is 25.2%
which are obviously better than that of Cu-based catalysts reported in the literature.
甲醇脱氢Cu基催化剂球形SiO2甲酸甲酯助剂
methanol dehydrogenationcopper-based catalystspherical SiO2methyl formateadditive
汪海滨, 吴静, 耿彩军, 等. CuO/SiO2甲醇脱氢制甲酸甲酯催化剂的研究[J]. 天然气化工—C1化学与化工, 2006, 31(3): 9-13.
WANG H B, WU J , GENG C J, et al. Study on Cu/SiO2 catalyst for dehydrogenation of methanol to methyl formate [J]. Natural Gas Chemical Industry, 2006, 31(3): 9-13.
RONG L Y, XU Z N, SUN J, et al. New methyl formate synthesis method: Coal to methyl formate [J]. Journal of Energy Chemistry, 2018, 27(1): 238-242.
KAISER D, BECKMANN L, WALTER J, et al. Conversion of green methanol to methyl formate [J]. Catalysts, 2021, 11(7): 869.
LI W, LIU H, IGLESIA E. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate [J]. Journal of Physical Chemistry B, 2006, 110(46): 23337-23342.
GÉRARD, JENNER. Homogeneous catalytic reactions involving methyl formate [J]. Applied Catalysis A-General, 1995, 121(1): 25-44.
莫珣桦, 卢冠忠, 严京峰, 等. 铜-钯复合催化膜在甲醇脱氢制甲酸甲酯中的应用[J]. 催化学报, 1998, 19(1): 14-17.
MO X H, LU G Z, YAN J F, et al. Application of Cu-Pd composite membranes in dehydrogenation of methanol to methyl formate [J]. Chinese Journal of Catalysis, 1998, 19(1):14-17.
武建兵, 吴志伟, 王瑞义, 等. 甲醇制备甲酸甲酯、甲缩醛和聚甲醛二甲醚的催化反应研究进展[J]. 燃料化学学报, 2015, 43(7): 816-828.
WU J B, WU Z W, WANG R Y, et al. Recent research progresses in the catalytic synthesis of methyl formate, dimethoxymethane and polyoxymethylene dimethyl ethers from methanol [J]. Journal of Fuel Chemistry and Technology, 2015, 43(7): 816-828.
RAO V M, SHANKAR V. High activity copper catalyst for one-step conversion of methanol to methyl formate at low temperature [J]. Journal of Chemical Technology and Biotechnology, 1988, 42(3): 183-196.
陈文龙, 刘海超. 甲醇脱氢和选择氧化制备甲酸甲酯的催化剂与反应路径[J]. 科学通报, 2015, 60(16): 1502-1512.
CHEN W L, LIU H C. Catalysts and reaction pathways for dehydrogenation and selective oxidation of methanol to methyl formate [J]. Chinese Science Bulletin, 2015, 60(16): 1502-1512.
YANG H H, CHEN Y Y, CUI X J, et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ Species in methanol dehydrogenation [J]. Angewandte Chemie-Internation Edition, 2018, 57(7): 1836-1840.
WU S P, SUN W, WANG X H, et al. Insights into the crucial role of a Zn promoter for methanol dehydrogenation to methyl formate over Cu(111) catalysts [J]. Physical Chemistry Chemical Physics, 2022, 37: 22661.
GUERREIRO ED, GORRIZ OF, LARSEN G, et al. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation: A comparative study using different preparation techniques [J]. Applied Catalysis A-General, 2000, 204(1): 33-48.
YUAN D J, HENGNE A M, SAIH Y, et al. Nonoxidative dehydrogenation of methanol to methyl formate through highly stable and reusable CuMgO-based catalysts [J]. ACS Omega, 2019, 4(1): 1854-1860.
MATSUMURA Y, ISHIBE H. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method [J]. Applied Catalysis B Environmental, 2009, 86(3/4): 114-120.
SODESAWA T. Dynamic change in surface area of Cu in dehydrogenation of methanol over Cu-SiO2 catalyst prepared by ion exchange method [J]. Reaction Kinetics and Catalysis Letters, 1984, 24: 259-264.
余锦涛, 周同心, 杜立辉, 等. 溶胶-凝胶法制备高分散Cu/SiO2催化剂及其催化丙二酸二乙酯加氢制备1,3-丙二醇研究[J]. 天然气化工—C1化学与化工, 2018, 43(4): 48-52+56.
YU J T, ZHOU T X, DU L H, et al. High dispersion Cu/SiO2 catalysts prepared by sol-gel method for hydrogenation of diethyl malonate to 1,3-propanediol [J]. Natural Gas Chemical Industry, 2018, 43(4): 48-52+56.
AI P P, TAN M H, REUBROYCHAROEN P, et al. Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production [J]. Catalysis Science & Technology, 2018, 8(24): 6441-6451.
LYKAKI M, PACHATOURIDOU E, CARABINEIRO S, et al. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts [J]. Applied Catalysis B Environmental, 2018, 230: 18-28.
MIURA H, NAKAHARA K, KITAJIMA T, et al. Concerted functions of surface acid-base pairs and supported copper catalysts for dehydrogenative synthesis of esters from primary alcohols [J]. ACS Omega, 2017, 2(9): 6167-73.
LI N, HUANG B, DONG X, et al. Bifunctional zeolites-silver catalyst enabled tandem oxidation of formaldehyde at low temperatures [J]. Nature Communications, 2022, 13: 2209.
李国儒, 李工, 周书喜, 等. Cu/MCM-41和Cu-ZnO/MCM-41的制备及对甲醇脱氢制甲酸甲酯的催化性能[J]. 常州大学学报, 2012, 24(2): 22-27.
LI G R, LI G, ZHOU S X, et al. Preparation and catalytic performance of Cu/MCM-4l and Cu-ZnO/MCM-41 for dehydrogenation of methanol to methyl formate [J]. Journal of Changzhou University, 2012, 24(2): 22-27.
WANG A L, YE C L, JIA X Y, et al. Methanol dehydrogenation to methyl formate catalyzed by Cu/SiO2 catalysts: Impact of precipitation procedure and calcination temperature [J]. Russian Journal of Applied Chemistry, 2021, 94(9): 1302-1312.
黄聪, 谢利强, 叶林敏, 等. 甲醇无氧脱氢制甲酸甲酯Cu/SiO2催化剂的粒径效应[J]. 厦门大学学报(自然科学版), 2022, 61(5): 815-822.
HUANG C, XIE LQ, YE L M, et al. Particle size effect on the Cu/SiO2 catalyst in the nonoxidative dehydrogenation of methanol to methyl formate [J]. Journal of Xiamen University (Natural Science), 2022, 61(5): 815-822.
王征, 武朦朦, 宋有为, 等. 层状Cu/SiO2催化剂的制备及其草酸二甲酯加氢性能研究[J]. 现代化工, 2023, 43(3): 157-162+170.
WANG Z, WU M M, SONG Y W, et al. Selective hydrogenation of dimethyl oxalate over layered Cu/SiO2 catalysts [J]. Modern Chemical Industry, 2023, 43(3): 157-162+170.
张淑娟, 郑晓玲, 许交兴, 等. 载体的结构对Ru/Al2O3催化剂金属分布状态的影响[J].燃料化学学报, 2001, 29(S1): 96-98.
ZHANG S J, ZHENG X L, XU J X, et al. The effect of structure of support on metal dispersion of Ru/Al2O3 catalyst [J]. Journal of Fuel Chemistry and Technology, 2001, 29(S1): 96-98.
ZHANG L J, MENG M, ZHOU S, et al. Promotional effect of partial substitution of Zn by Ce in CuZnAlO catalysts used for hydrogen production via steam reforming of dimethyl ether [J]. Journal of Power Sources, 2013, 232: 286-296.
吴迪, 张娟, 黄志军, 等. 铈改性的铜/六方介孔二氧化硅催化剂在温和反应条件下高效地将草酸二甲酯氢化为乙二醇[J].燃料化学学报, 2023, 51(2): 186-196.
WU D, ZHANG J, HUANG Z J, et al. Cerium-modified copper/hexagonal mesoporous silica catalyst for efficient dimethyl oxalate hydrogenation to ethylene glycol under moderate reaction conditions [J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 186-196.
BIAN Z F, ZHONG W Q, YU Y, et al. Cu/SiO2 derived from copper phyllosilicate for low-temperature water-gas shift reaction: Role of Cu+ sites [J]. International Journal of Hydrogen Energy, 2020, 45(51): 27078-27088.
WANG Y, YANG W L, YAO D W, et al. Effect of surface hydroxyl group of ultra-small silica on the chemical states of copper catalyst for dimethyl oxalate hydrogenation [J]. Catalysis Today, 2020, 350: 127-135.
WANG N, QUAN Y H, ZHAO J X, et al. Highly active CuZn/SBA-15 catalyst for methanol dehydrogenation to methyl formate: Influence of ZnO promoter [J]. Molecular Catalysis, 2021, 505: 111514.
LIU Y J, CUI N, JIA P L, et al. Synergy between active sites of ternary CuZnAlOOH catalysts in CO hydrogenation to ethanol and higher alcohols [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6634-6646.
ZHUKOV Y M, EFIMOV A Y, ZHIZHIN E V, et al. Effect of the exposure time at recording an X-ray photoelectron spectrum on the charge state and environment of copper in mordenites [J]. JETP Letters, 2016, 103: 399-402.
ESPINÓS J P, MORALES J, BARRANCO A, et al. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts [J]. Journal of Physical Chemistry B, 2002, 106(27): 6921-6929.
LIN K S, CHOWDHURY S, YEH H P, et al. Preparation and characterization of CuO/ZnO-Al2O3 catalyst wash coats with CeO2 sols for auto thermal reforming of methanol in a microreactor [J]. Catalysis Today, 2011, 164(1): 251-256.
HUANG H J, WANG B, WANG Y, et al. Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate [J]. Catalysis Today, 2020, 358: 68-73.
VASILCHENKO D, ASANOVA T, KOLESOV B, et al. Cerium(III) nitrate derived CeO2 support stabilising PtOx active species for room temperature CO oxidation [J]. ChemCatChem, 2020, 12(5): 1413-1428.
ZHAO Y J, SHAN B, WANG Y, et al. An effective CuZn-SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol [J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4526-4534.
LU Z P, GAO D Z, YIN H B, et al. Methanol dehydrogenation to methyl formate catalyzed by SiO2-, hydroxyapatite-, and MgO- supported copper catalysts and reaction kinetics [J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 301-308.
REN B J, ZHAO C, YANG L, et al. Robust structured Cu-based film catalysts with greatly enhanced catalytic hydrogenation property [J]. Applied Surface Science, 2019, 504: 144364.
闫御迪, 张财顺, 张磊, 等. 甲醇水蒸气重整制氢催化剂助剂研究进展[J]. 当代化工, 2022, 51(8): 1927-1931.
YAN Y D, ZHANG C S, ZHANG L, et al. Research progress of catalyst auxiliaries for hydrogen production by methanol steam reforming [J]. Contemporary Chemical Industry, 2022, 51(8): 1927-1931.
0
Views
163
下载量
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution