1.中石化中原石油工程设计有限公司 河南 郑州 451000
2.中石化石油工程建设有限公司,北京 100020
扫 描 看 全 文
王涛,史世杰,曾丽瑶等.地下煤气化合成气的脱碳提氢耦合工艺探讨[J].低碳化学与化工,2024,49(01):125-132.
WANG Tao,SHI Shijie,ZENG Liyao,et al.Discussion on coupling process of decarbonization and hydrogen extraction for underground coal gasification syngas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):125-132.
王涛,史世杰,曾丽瑶等.地下煤气化合成气的脱碳提氢耦合工艺探讨[J].低碳化学与化工,2024,49(01):125-132. DOI: 10.12434/j.issn.2097-2547.20230182.
WANG Tao,SHI Shijie,ZENG Liyao,et al.Discussion on coupling process of decarbonization and hydrogen extraction for underground coal gasification syngas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):125-132. DOI: 10.12434/j.issn.2097-2547.20230182.
针对煤炭地下气化(UCG)技术制备的合成气具有温度高(,>, 200 ℃)、压力大(3.35 MPa)、饱和含水量大及组分复杂(含CH,4,、H,2,、CO,2,和CO等)的特点,设计并采用膜分离+溶剂吸收耦合的处理方法以实现地下煤合成气中CO,2,的脱除和H,2,的提纯。地下煤合成气经过二级膜分离单元的处理,实现了CO,2,/H,2,与CH,4,的分离并得到了脱碳净化气,其中CO,2,含量(物质的量分数)≤ 3%,该膜分离工艺所需能耗为0.297 kW·h/m,3,。使用醇胺吸收法处理CO,2,/H,2,混合气,并通过配方溶液筛选、工艺流程优化和校验分析等方法开展了研究,最终得到了H,2,纯度(物质的量分数)≥ 99%的产品,该醇胺吸收法的能耗为0.341 kW·h/m,3,。使用膜分离+溶剂吸收耦合处理复杂工况的地下煤合成气,可得到脱碳净化气、纯CO,2,和工业级H,2,,提高了项目的经济价值,具有较大的应用潜力。
In response to the characteristics of high synthesis gas temperature (,>, 200 ℃), high pressure (3.35 MPa), high saturated water content and complex components (including CH,4, H,2, CO,2, CO, etc.) prepared by underground coal gasification (UCG) technology, a membrane separation + solvent absorption coupling treatment method was designed to achieve CO,2, removal and H,2, purification from underground coal gasification syngas. The underground coal gasification syngas was treated by a secondary membrane separation unit to achieve the separation of CO,2,/H,2, and CH,4, and the decarbonized purified gas is obtained, where the CO,2, content (mole fraction) is less than 3%. The energy consumption required for this membrane separation process is 0.297 kW·h/m,3,. The CO,2,/H,2, mixture was treated by amine absorption method, and the research was conducted by the methods of formula solution screening, process optimization and check analysis. Finally, the product with H,2, purity (mole fraction) ≥ 99% is obtained. The energy consumption of the amine absorption method is 0.341 kW·h/m,3,. Using membrane separation + solvent absorption coupling treatment method to treat underground coal synthesis gas under complex working conditions, decarbonized purified gas, pure CO,2, and industrial grade H,2, can be obtained, greatly improving the economic value of the project and having great application potential.
地下煤气化膜分离溶液吸收法脱碳提氢
underground coal gasificationmembrane separationsolvent absorption methoddecarbonizationhydrogen extraction
孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179.
MENG X Y, CHEN M Y, GU A L, et al. China’s hydrogen development strategy in the context of double carbon targets [J]. Natural Gas Industry, 2022, 42(4): 156-179.
邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG Q, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy [J]. Natural Gas Industry, 2022, 42(4): 1-20.
张智, 赵苑瑾, 蔡楠. 中国氢能产业技术发展现状及未来展望[J]. 天然气工业, 2022, 42(5): 156-165.
ZHANG Z, ZHAO Y J, CAI N. Technological development status and prospect of hydrogen energy industry in China [J]. Natural Gas Industry, 2022, 42(5): 156-165.
ABD A A, NAJI S Z, OTHMAN M R, et al. Effect of acidic products from degradation of N-methyldiethanolamine amine on CO2/H2S capturing from natural gas [J]. Clean Technologies and Environmental Policy, 2021, 23(7): 2133-2144.
LI T C, TANTIKHAJORNGOSOL P, YANG C N, et al. Experimental investigations and developing multilayer neural network models for prediction of CO2 solubility in aqueous MDEA/PZ and MEA/MDEA/PZ blends [J]. Greenhouse Gases, 2021,11(4): 712-733.
MAQSOOD K, ALI A, NASIR R, et al. Experimental and simulation study on high-pressure VL-S cryogenic hybrid network for CO2 capture from highly sour natural gas [J]. Process Safety and Environmental Protection, 2021, 150: 36-50.
BERNARDO M, LAPA N, FONSECA I, et al. Biomass valorization to produce porous carbons: Applications in CO2 capture and biogas upgrading to biomethane—A mini-review [J]. Frontiers in Energy Research, 2021, 9: 625188.
JEONG Y H, LEE M S, LEE G H, et al. Unavoidable but minimizable microdefects in a polycrystalline zeolite membrane: Its remarkable performance for wet CO2/CH4 separation [J]. Journal of Materials Chemistry A, 2021, 9(21): 12593-12605.
CHEN C, LI X, ZOU W X, et al. Structural modulation of UiO-66-NH2 metal-organic framework via interligands cross-linking: Cooperative effects of pore diameter and amide group on selective CO2 separation [J]. Applied Surface Science, 2021, 553: 149547.
BAI J, CHENG C W, WEI Y X, et al. Thermodynamic investigation of hydrate-based CO2 capture from simulated flue gas with new mixed promoters [J]. International Journal of Chemical Reactor Engineering, 2021, 19(1): 75-85.
邹才能, 陈艳鹏, 孔令峰, 等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发, 2019, 46(2): 5-14.
ZOU C N, CHEN Y P, KONG L F, et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China [J]. Petroleum Exploration and development, 2019, 46(2): 5-14.
王兴刚, 范谭广, 焦立新, 等. 三塘湖盆地煤炭地下气化地质评价与有利区域[J]. 新疆石油地质, 2023, 44(3): 307-313.
WANG X G, FAN T G, JIAO L X, et al. Geological evaluation and favorable areas of underground coal gasification in Santanghu basin [J]. Xinjiang Petroleum Geology, 2023, 44(3): 307-313.
李颖楠, 张引弟, 管奥成, 等. 煤炭地下气化采出气的脱碳工艺优化及能效分析[J]. 科学技术与工程, 2022, 22(21): 9231-9237.
LI Y N, ZHANG Y D, GUAN A C, et al. Decarbonization process optimization and energy efficiency analysis of coal underground gasification produced gas [J]. Science Technology and Engineering, 2022, 22(21): 9231-9237.
赵泽乾, 杨兆彪, 易同生, 等. 国外煤炭地下气化研究现状[J]. 中国煤炭地质, 2023, 35(4): 1-10.
ZHAO Z Q, YANG Z B, YI T S, et al. Research status of underground coal gasification abroad [J]. Coal Geology of China, 2023, 35(4): 1-10.
曾丽瑶, 胡恩源, 王晓强, 等. 地下煤合成气脱碳工艺优选及能耗模拟优化研究[J]. 四川化工, 2022, 25(6): 30-33.
ZENG L Y, HU E Y, WANG X Q, et al. Study on optimization of underground coal syngas decarbonization process and simulation and optimization of energy consumption [J]. Sichuan Chemical Industry, 2022, 25(6): 30-33.
詹媛媛. 深层地下煤气化技术及其产品方案研究[J]. 大氮肥, 2022, 45(3): 154-159.
ZAN Y Y. Research on deep underground coal gasification technology and its product solutions [J]. Large Scale Nitrogenous Fertilizer Industry, 2022, 45(3): 154-159.
赵辉. 气体分离膜技术及其在石油化工领域的应用[J]. 石油化工, 2023, 52(3): 412-417.
ZHAO H. Gas separation membrane technology and its application in petrochemical industry [J]. Petrochemical Technology, 2023, 52(3): 412-417.
ZHU Y Q, WANG Z, ZHANG C X, et al. A novel membrane prepared from sodium alginate cross-linked with sodium tartrate for CO2 capture [J]. Journal of the Chinese Institute of Chemical Engineers, 2013, 21(10): 1098-1105.
熊波, 陈健, 李克兵, 等. 工业排放气二氧化碳捕集与利用技术进展[J]. 低碳化学与化工, 2023, 48(1): 9-18.
XIONG B, CHEN J, LI K B, et al. Technical progress in carbon dioxide capture and utilization of industrial vent gas [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(1): 9-18.
郑飞, 牛宇虹, 储广峰, 等. 膜分离技术在油气回收上的应用研究[J]. 现代工业经济和信息化, 2022, (12): 128-130+133.
ZHENG F, NIU Y H, CHU G F, et al. Research on application of membrane separation technology in oil and gas recovery [J]. Modern Industrial Economy and Informationization, 2022, (12): 128-130+133.
严硕, 于海斌, 陈赞. 膜法脱除天然气中二氧化碳的工艺技术发展现状[J]. 无机盐工业, 2022, 54(5): 38-46.
YAN S, YU H B, CHEN Z. Development status of membrane technology for removing carbon dioxide from natural gas [J]. Inorganic Chemicals Industry, 2022, 54(5): 38-46.
方远鑫, 肖武, 姜晓滨, 等. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
FANG Y X, XIAO W, JIANG X B, et al. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749.
王霞, 游赟, 罗明伟. 基于HYSYS的混合胺液脱酸性能及能耗影响因素分析[J]. 油气田地面工程, 2017, 36(11): 50-54+82.
WANG X, YOU B, LUO M W. Analysis of the deacidification performance and energy consumption influence factors of mixed amine liquid based on HYSYS [J]. Oil-Gas Field Surface Engineering, 2017, 36(11): 50-54+82.
张婷, 许诚. 采用余热余压利用的燃煤电站脱碳系统热力学分析[J]. 动力工程学报, 2023, 43(4): 475-482.
ZHANG T, XU C. Thermodynamic analysis of a decarbonization system of coal-fired power station using waste heat and pressure [J]. Chinese Journal of Power Engineering, 2023, 43(4): 475-482.
刘凯, 赵维松, 陈友福. 合成气制氢装置脱碳系统运行问题分析与对策[J]. 炼油技术与工程, 2023, 53(4): 25-28.
LIU K, ZHAO W S, CHEN Y F. Analysis and countermeasures of operation problems of CO2 removal system in HYCO unit [J]. Petroleum Refinery Engineering, 2023, 53(4): 25-28.
张磊, 蒋洪. 高含CO2天然气脱碳工艺中MDEA活化剂优选[J]. 石油与天然气化工, 2017, 46(4): 22-29.
ZHANG L, JIANG H. MDEA activator optimization for decarbonization process of high CO2-containing natural gas [J]. Chemical Engineering of Oil and Gas, 2017, 46(4): 22-29.
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution