成都信息工程大学 大气环境模拟与污染控制四川省高校重点实验室,四川 成都 610225
扫 描 看 全 文
罗晶,刘晨龙,徐成华等.均苯三甲酸辅助合成CuZnAlZr催化CO2加氢制甲醇[J].低碳化学与化工,2024,49(01):33-41.
LUO Jing,LIU Chenlong,XU Chenghua,et al.1,3,5-Benzenetricarboxylic acid assisted synthesis of CuZnAlZr catalysts for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):33-41.
罗晶,刘晨龙,徐成华等.均苯三甲酸辅助合成CuZnAlZr催化CO2加氢制甲醇[J].低碳化学与化工,2024,49(01):33-41. DOI: 10.12434/j.issn.2097-2547.20230178.
LUO Jing,LIU Chenlong,XU Chenghua,et al.1,3,5-Benzenetricarboxylic acid assisted synthesis of CuZnAlZr catalysts for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):33-41. DOI: 10.12434/j.issn.2097-2547.20230178.
CO,2,加氢制甲醇是合成化学增值品的重要途径之一,有助于缓解能源与环境压力。采用共沉淀法合成了用于CO,2,加氢制甲醇的CuZnAlZr催化剂,并采用X射线衍射(XRD)、N,2,O-H,2,滴定、N,2,吸/脱附、H,2,程序升温还原(H,2,-TPR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等手段对所得催化剂进行了表征,详细考察了均苯三甲酸(BTC)辅助合成对CuZnAlZr催化剂活性Cu物种的分散度及其催化性能的影响。结果表明,在CuZnAlZr催化剂前驱体中引入BTC后,焙烧阶段分解生成气体产物有利于增加催化剂的比表面积并产生更多的孔隙结构,还可减弱Cu与载体氧化物之间的相互作用,有助于Cu物种的分散。当BTC引入量为,n,(BTC)/,n,(Cu,2+,) = 1/6时,在空气中焙烧所得CuZnAlZr催化剂表面存在更多高度分散的较小Cu晶粒和ZnO晶相,Cu与ZnO物种之间的协同作用增强使其表现出优异的催化性能,CO,2,转化率和甲醇时空产率分别可达27.81%和278.6 g/(kg·h),说明在前驱体中引入BTC辅助合成可得到Cu分散度高和Cu晶粒较小的高活性加氢催化剂。
CO,2, hydrogenation to methanol is one of the important ways to synthesize chemical value-added products, which helps to relieve energy and environmental pressure. CuZnAlZr catalysts for CO,2, hydrogenation to methanol were synthesized by co-precipitation method, and the resulting catalysts were characterized by X-ray diffraction (XRD), N,2,O-H,2, titration, N,2, adsorption/desorption, H,2, temperature programmed reduction (H,2,-TPR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). And the effects of 1,3,5-benzenetricarboxylic acid (BTC) assisted synthesis on the dispersion of active Cu species in CuZnAlZr catalysts and their catalytic performance were investigated in detail. The results show that after the introduction of BTC into the CuZnAlZr catalysts precursor, the gas products generated by the decomposition in the calcining stage, contributes to the increase of the specific surface area of the catalyst and generates more pore structures, and it also weakens the interaction between Cu and the carrier oxide, which contributes to the dispersion of Cu species. When the amount of BTC introduced into the catalyst is ,n,(BTC)/,n,(Cu,2+,) = 1/6, more highly dispersed smaller Cu grains and ZnO crystalline phases existe on the surface of the CuZnAlZr catalysts calcined in air and the enhanced synergy between Cu and ZnO species leds to excellent catalytic performance with CO,2, conversion rate and methanol space-time yield up to 27.81% and 278.6 g/(kg·h), respectively. This indicates that the introduction of appropriate amount of BTC in the precursor to assist the synthesis can lead to highly active hydrogenation catalysts with high Cu dispersion and small Cu grains.
均苯三甲酸CuZnAlZr催化剂CO2加氢甲醇
135-benzenetricarboxylic acidCuZnAlZr catalystsCO2 hydrogenationmethanol
KEITH D W. Why capture CO2 from the atmosphere? [J]. Science, 2009, 325(5948): 1654-1655.
HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal [J]. Nature, 2019, 575(7781): 87-97.
游俊杰, 徐成华, 黄粲, 等. 稀土金属掺杂Cu-ZnO-Al2O3催化合成气制甲醇研究[J]. 天然气化工—C1化学与化工, 2017, 42(6): 29-33.
YOU J J, XU C H, HUANG C, et al. Synthesis of methanol from syngas over Cu-ZnO-Al2O3 modified by rare earth oxides [J]. Natural Gas Chemical Industry, 2017, 42(6): 29-33.
ZHAO H Y, XU C H, WANG T F. Production of methane from biomass glycerol through coupling of steam reforming and methanation on Ni-Mn/Al2O3 [J]. Sustainable Chemistry and Pharmacy, 2019, 13: 100150.
REN H, XU C H, ZHAO H Y, et al. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO [J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 261-267.
WANG Y H, KATTEL S, GAO W G, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol [J]. Nature Communications, 2019, 10(1): 1166.
ZHENG Y H, XU C H, ZHANG X, et al. Synergistic effect of alkali Na and K promoter on Fe-Co-Cu-Al catalysts for CO2 hydrogenation to light hydrocarbons [J]. Catalysts, 2021, 11(6): 735.
NI Y M, CHEN Z Y, FU Y, et al. Selective conversion of CO2 and H2 into aromatics [J]. Nature Communications, 2018, 9(1): 3457.
李美兰, 邓志勇, 翟刚, 等. 甲醇一步氧化制甲缩醛金属催化剂研究进展[J]. 天然气化工—C1化学与化工, 2014, 39(6): 82-89.
LI M L, DENG Z Y, ZHAI G, et al. Advances in metal catalyst systems for one-step selective oxidation of methanol to dimethoxymethane [J]. Natural Gas Chemical Industry, 2014, 39(6): 82-89.
龙焱, 李美兰, 邓志勇, 等. 溴化铜一步催化氧化液相甲醇合成甲缩醛[J]. 天然气化工—C1化学与化工, 2016, 41(6): 7-9+30.
LONG Y, LI M L, DENG Z Y, et al. One-step oxidation of liquid methanol to dimethoxymethane with CuBr2 as catalyst [J]. Natural Gas Chemical Industry, 2016, 41(6): 7-9+30.
邓志勇, 王馨雨, 刘源, 等. CO2和甲醇直接合成碳酸二甲酯催化剂研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(5): 1-7.
DENG Z Y, WANG X Y, LIU Y, et al. Research progress of catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol [J]. Natural Gas Chemical Industry, 2022, 47(5): 1-7.
ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
闫杏, 吕晓东, 王霞, 等. pH值及焙烧气氛对Cu-Zn-Al甲醇合成催化剂结构和性能的影响[J]. 天然气化工—C1化学与化工, 2015, 40(6): 33-38.
YAN X, LU X D, WANG X, et al. Effect of pH and calcination atmosphere on structure and performance of Cu-Zn-Al methanol synthesis catalyst [J]. Natural Gas Chemical Industry, 2015, 40(6): 33-38.
ZHANG G C, FAN G L, YANG L, et al. Tuning surface-interface structures of ZrO2 supported copper catalysts by in situ introduction of indium to promote CO2 hydrogenation to methanol [J]. Applied Catalysis A-General, 2020, 605: 117805.
XIAO S, ZHANG Y F, GAO P, et al. Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Catalysis Today, 2017, 281: 327-336.
DONG X S, LI F, ZHAO N, et al. CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction [J]. Chinese Journal of Catalysis, 2017, 38(4): 717-725.
ZHANG Y F, ZHONG L S, WANG H, et al. Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation [J]. Journal of CO2 Utilization, 2016, 15: 72-82.
AYODELE O B. Rational design of zeolite Y supported oxalate and borohydride ligands functionalized Cu catalysts for CO2 conversion to specialty chemicals [J]. Applied Catalysis B-Environmental , 2022, 312: 121381.
HOU X X, XU C H, LIU Y L, et al. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde [J]. Journal of Catalysis, 2019, 379: 147-153.
QI T Q J, ZHAO Y M, CHEN S Y, et al. Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation [J]. Molecular Catalysis, 2021, 514: 111870.
GAO P, ZHONG L S, ZHANG L N, et al. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Catalysis Science & Technology, 2015, 5(9): 4365-4377.
XU C H, ZHENG L K, DENG D F, et al. Effect of activation temperature on the surface copper particles and catalytic properties of Cu-Ni-Mg-Al oxides from hydrotalcite-like precursors [J]. Catalysis Communications, 2011, 12(11): 996-999.
KIM J, JEONG C, BAIK J H, et al. Phases of Cu/Zn/Al/Zr precursors linked to the property and activity of their final catalysts in CO2 hydrogenation to methanol [J]. Catalysis Today, 2020, 347: 70-78.
BONURA G, CORDARO M, CANNILLA C, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol [J]. Applied Catalysis B-Environmental, 2014, 152: 152-161.
TOYIR J, DE LA PISCINA P R, FIERRO J L G, et al. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter [J]. Applied Catalysis B-Environmental, 2001, 29(3): 207-215.
NATESAKHAWAT S, LEKSE J W, BALTRUS J P, et al. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol [J]. ACS Catalysis, 2012, 2(8): 1667-1676.
MEUNIER F C. Mixing copper nanoparticles and ZnO nanocrystals: A route towards understanding the hydrogenation of CO2 to methanol? [J]. Angewandte Chemie-International Edition, 2011, 50(18): 4053-4054.
DASIREDDY V D B C, LIKOZAR B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity [J]. Renewable Energy, 2019, 140: 452-460.
HANSEN P L, WAGNER J B, HELVEG S, et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals [J]. Science, 2002, 295(5562): 2053-2055.
MOUSAVI-KAMAZANI M. Facile sonochemical-assisted synthesis of Cu/ZnO/Al2O3 nanocomposites under vacuum: Optical and photocatalytic studies [J]. Ultrasonics Sonochemistry, 2019, 58: 104636.
GUO Q, LI S Z, LI J, et al. Enhanced CO2 hydrogenation to methanol on the mesostructured Cu-ZnO/Al2O3-ZrO2 catalyst [J]. ACS Applied Energy Materials, 2021, 4(8): 8311-8321.
PRAŠNIKAR A, JURKOVIĆ D L, LIKOZAR B. Reaction path analysis of CO2 reduction to methanol through multisite microkinetic modelling over Cu/ZnO/Al2O3 catalysts [J]. Applied Catalysis B-Environmental, 2021, 292: 120190.
DASIREDDY V D B C, NEJA S Š, BLAŽ L. Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol [J]. Journal of CO2 Utilization, 2018, 28: 189-199.
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution