1.长江大学 化学与环境工程学院,湖北 荆州 434100
2.长庆油田油气工艺研究院,陕西 西安 710018
扫 描 看 全 文
YU Xiaorong, JI Renjing, YANG Huan, et al. Research progress of post-combustion carbon dioxide capture materials. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):82-94(2023)
YU Xiaorong, JI Renjing, YANG Huan, et al. Research progress of post-combustion carbon dioxide capture materials. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):82-94(2023) DOI: 10.12434/j.issn.2097-2547.20230124.
二氧化碳(CO,2,)的过量排放造成了气候变化、生态失衡和海洋酸化等一系列严重问题,CO,2,捕集与封存(CCS)技术是目前能缓解CO,2,过量排放的有效手段。在CCS技术中,CO,2,捕集环节所需的成本最高,为了使CCS技术得到有效推广和应用,应重点研究CO,2,捕集技术和材料以降低该环节的成本。在3种CO,2,捕集技术中,与燃烧前捕集技术和富氧燃烧技术相比,燃烧后捕集技术因技术成熟、对设备改造要求低而被广泛应用。重点综述了燃烧后CO,2,捕集材料的研究进展,包括液体吸收剂(有机胺、氨水溶液和离子液体)、固体吸附剂(生物炭、沸石和金属有机框架材料等)以及膜材料,并对比分析了各种材料的优缺点。最后提出干水因其独特的“固包液”结构可作为一种固液复合CO,2,捕集材料,有望克服单一材料的缺点,提高CO,2,捕集效率。
The excessive emission of carbon dioxide (CO,2,) has caused a series of serious problems such as climate change, ecological unbalance, ocean acidification and so on. CO,2, capture and storage (CCS) technology is an effective means to alleviate the excessive emission of CO,2, at present. Among CCS technologies, CO,2, capture requires the highest cost. In order to effectively promote and apply CCS technology, emphasis should be placed on CO,2, capture technology and materials to reduce the cost of this process. Among the three CO,2, capture technologies, compared with pre-combustion capture technology and oxy-combustion technology, post-combustion capture technology has been widely used because of its mature technology and low requirements for equipment transformation. The research progress of CO,2, capture materials after combustion was reviewed, including liquid absorbent (organic amine, ammonia solution and ionic liquid), solid adsorbent (biochar, zeolite, metal-organic frame materials, etc.) and membrane materials, and advantages and disadvantages of each materials were compared and analyzed. Finally, it was proposed that dry water can be used as a solid-liquid composite CO,2, capture material because of its unique “solid-liquid” structure, which is expected to overcome the shortcomings of a single material and improve the CO,2 ,capture efficiency.
CO2捕集液体吸收剂固体吸附剂膜分离干水
CO2 captureliquid absorbentsolid adsorbentmembrane separationdry water
AHMED R, LIU G J, YOUSAF B, et al. Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—A review [J]. J Cleaner Prod, 2020, 242: 118409.
BP Amoco. BP statistical review of world energy 2022 [EB/OL]. (2022-06-28)[2023-08-11]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.htmlhttps://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
RAHMAN F A, AZIZ M M A, SAIDUR R, et al. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future [J]. Renewable Sustainable Energy Rev, 2017, 71: 112-126.
Working Group III of the Intergovernmental Panel on Climate Change (IPCC). IPCC special report on carbon dioxide capture and storage [M]. Cambridge, United Kingdom, New York: Cambridge University Press, 2005.
温翯, 韩伟, 车春霞, 等. 燃烧后二氧化碳捕集技术与应用进展[J]. 精细化工, 2022, 39(8): 1584-1595+1632.
惠武卫, 姬存民, 赵合楠, 等. 低浓度CO2捕集技术研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 19-24+98.
杨菲, 刘苗苗, 陆诗建, 等. 适用于烟气CO2捕集的相变吸收剂研究进展[J]. 低碳化学与化工, 2023, 48(2): 113-120.
YU H. Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies [J]. Chin J Chem Eng, 2018, 26(11): 2255-2265.
乔琨, 吕泽宁, 杨立军, 等. 氨法捕碳技术再生过程无机添加剂效应研究进展[J]. 无机盐工业, 2022, 54(10): 79-86.
袁标, 沈鹏. 离子液体捕集CO2的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(3): 1-7.
LIU Y, SONG Y, ZHOU J H, et al. Modified polyether glycols supported ionic liquids for CO2 adsorption and chemical fixation [J]. Mol Catal, 2020, 492: 111008.
BOLDOO T, CHINNASAMY V, KIM M, et al. CO2 entrapment using 1-hexyl-3-methyl-imidazolium room temperature ionic liquids with multi-walled carbon nanotubes [J]. J CO2 Util, 2022, 66: 102285.
ELMOBARAK W F, ALMOMANI F, TAWALBEH M, et al. Current status of CO2 capture with ionic liquids: Development and progress [J]. Fuel, 2023, 344: 128102.
ZHANG C, SUN S Z, HE S, et al. Direct air capture of CO2 by KOH-activated bamboo biochar [J]. J Energy Inst, 2022, 105: 399-405.
LIU C, FU C, LI T Z, et al. CO2 capture using biochar derived from conditioned sludge via pyrolysis [J]. Sep Purif Technol, 2023, 314: 123624.
LI H X, TANG M H, HUANG X L, et al. An efficient biochar adsorbent for CO2 capture: Combined experimental and theoretical study on the promotion mechanism of N-doping [J]. Chem Eng J, 2023, 466: 143095.
张诗洋, 叶彬, 赵文通, 等. 沸石吸附剂在CO2捕集领域的研究进展[J]. 当代化工研究, 2022, 120(19): 17-20.
慕佳琪, 方震华, 朱弘宝, 等. 应用于烟气中CO2捕集的固体吸附材料研究进展[J]. 精细化工, 2023, 40(9):1857-1866+1958.
季洪峰, 李灿华, 都刚, 等. 固废源钙基碳捕集剂制备及抗烧结性研究进展[J]. 无机盐工业, 2023, 55(3): 28-35.
KARGARI A, REZAEINIA S. State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives [J]. J Ind Eng Chem, 2020, 84: 1-22.
THEO W L, LIM J S, HASHIM H, et al. Review of pre-combustion capture and ionic liquid in carbon capture and storage[J]. Appl Energy, 2016, 183: 1633-1663.
BABU P, LINGA P, KUMAR R, et al. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture [J]. Energy, 2015, 85: 261-279.
MUKHERJEE A, OKOLIE J A, ABDELRASOUL A, et al. Review of post-combustion carbon dioxide capture technologies using activated carbon [J]. J Environ Sci, 2019, 83(9): 46-63.
张丰, 傅昂毅, 柳凯译. 碳捕集、封存与利用技术研究进展[J]. 皮革制作与环保科技, 2022, 3(1): 173-175+178.
刘建华. 国内燃煤锅炉富氧燃烧技术进展[J]. 热力发电, 2020, 49(7): 48-54.
SCHEFFKNECHT G, Al-MAKHADMEH L, SCHNELL U, et al. Oxy-fuel coal combustion—A review of the current state-of-the-art [J]. Int J Greenhouse Gas Con, 2011, 5(1): 16-35.
TOFTEGAARD M B, BRIX J, JENSEN P A, et al. Oxy-fuel combustion of solid fuels [J]. Prog Energy Combust Sci, 2010, 36(5): 581-625.
LÓPEZ R, FERNÁNDEZ C, MARTÍNEZ O, et al. Techno-economic analysis of a 15 MW corn-rape oxy-combustion power plant [J]. Fuel Process Technol, 2016, 142: 296-304.
GÜR T M. Perspectives on oxygen-based coal conversion towards zero-carbon power generation [J]. Energy, 2020, 196: 117074.
RAMDIN M, LOOS T W D, VLUGT T J H. State-of-the-art of CO2 capture with ionic liquids [J]. Ind Eng Chem Res, 2012, 51(24): 8149-8177.
SHEWCHUK S R, MUKHERJEE A, DALAI A K. Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation of CO2 into renewable energy source: A review [J]. Chem Eng Sci, 2021, 243: 116735.
谢辉. 二氧化碳捕集技术应用现状及研究进展[J]. 化肥设计, 2021, 59(6): 1-9.
王敏, 王展旭. 液-液相变溶剂捕集CO2烟气技术的研究进展[J]. 化学工程师, 2018, 32(6): 52-56.
KRÓTKI A, SOLNY L W, STEC M, et al. Experimental results of advanced technological modifications for a CO2 capture process using amine scrubbing [J]. Int J Greenhouse Gas Con, 2020, 96: 103014.
王金意, 牛红伟, 刘练波, 等. 燃煤电厂烟气新型CO2吸收剂开发与工程应用[J]. 热力发电, 2021, 50(1): 54-61.
MANTRIPRAGADA H C, ZHAI H B, RUBIN E S. Boundary dam or petra nova—Which is a better model for CCS energy supply? [J]. Int J Greenhouse Gas Con, 2019, 82: 59-68.
LUIS P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives [J]. Desalination, 2016, 380: 93-99.
GÜR T M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies [J]. Prog Energy Combust Sci, 2022, 89: 100965.
平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983.
朱凯丽, 段潍超, 赵树杰, 等. 两相胺吸收剂用于碳捕集的研究进展[J]. 当代化工, 2022, 51(10): 2468-2472.
PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide post combustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines [J]. Environ Sci Technol, 2009, 43(16): 6427-6433.
FREEMAN S A, DUGAS R, WAGENER D H V, et al. Carbon dioxide capture with concentrated, aqueous piperazine [J]. Int J Greenhouse Gas Con, 2010, 4(2): 119-124.
CONWAY W, BEYAD Y, FERON P, et al. CO2 absorption into aqueous amine blends containing benzylamine (BZA), monoethanolamine (MEA), and sterically hindered/tertiary amines [J]. Energy Procedia, 2014, 63: 1835-1841.
CHEN G Y, CHEN G J, PERUZZINI M, et al. Understanding the potential benefits of blended ternary amine systems for CO2 capture processes through 13C NMR speciation study and energy cost analysis [J]. Sep Purif Technol, 2022, 291: 120939.
LIU J, LI X S, ZHANG Z W, et al. Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends [J]. Greenh Gases, 2019, 9(2): 349-359.
LIANG Z W, RONGWONG W, LIU H L, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents [J]. Int J Greenhouse Gas Con, 2015, 40: 26-54.
BANDYOPADHYAY A. Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: A critical analysis [J]. Clean Technol Environ Policy, 2011, 13: 269-294.
赵然磊, 马文涛, 徐晓, 等. 二氧化碳捕集化学吸收剂的研究进展[J]. 精细化工, 2023, 40(1): 1-9.
马双忱, 王梦璇, 孙云雪, 等. 氨水与MEA的CO2捕集对比研究[J]. 动力工程学报, 2012, 32(1): 52-58.
马双忱, 陈公达, 马宵颖, 等. 氨法碳捕集过程中氨逃逸控制[J]. 化工学报, 2014, 65(10): 4086-4093.
RASHIDI H, RASOULI P, AZIMI H. A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study [J]. Energy, 2022, 244: 122711.
WU Y X, XU J H, MUMFORD K, et al. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids [J]. Green Chem Eng, 2020, 1(1): 16-32.
王兰云, 张亚娟, 徐永亮, 等. 离子液体吸收CO2及其机理研究进展[J]. 安全与环境学报, 2022, 22(3): 1525-1542.
LUO X Y, CHEN K H, LI H R, et al. The capture and simultaneous fixation of CO2 in the simulation of fuel gas by bifunctionalized ionic liquids [J]. Int J Hydrogen Energy, 2016, 41(21): 9175-9182.
LIU F, SHEN Y, SHEN L, et al. Sustainable ionic liquid organic solution with efficient recyclability and low regeneration energy consumption for CO2 capture [J]. Sep Purif Technol, 2021, 275: 119123.
SHOHRAT A, ZHANG M, HU H, et al. Mechanism study on CO2 capture by ionic liquids made from TFA blended with MEA and MDEA [J]. Int J Greenhouse Gas Con, 2022, 119: 103709.
XIAO M, LIU H L, GAO H X, et al. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine [J]. Appl Energy, 2019, 235: 311-319.
SEGGIANI M, PUCCINI M, VITOLO S. Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration [J]. Int J Greenhouse Gas Con, 2013, 17: 25-31.
SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: A review [J]. Ind Eng Chem Res, 2012, 51(4): 1438-1463.
OSCHATZ M, ANTONIETTI M. A search for selectivity to enable CO2 capture with porous adsorbents [J]. Energy Environ Sci, 2018, 11(1): 57-70.
OZDEMIR E, SCHROEDER K. Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals [J]. Energy Fuels, 2009, 23(5): 2821-2831.
BALAHMAR N, Al-JUMIALY A S, MOKAYA R. Biomass to porous carbon in one step: Directly activated biomass for high performance CO2 storage [J]. J Mater Chem A, 2017, 5(24): 12330-12339.
WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. J Cleaner Prod, 2019, 227: 1002-1022.
CHIANG Y C, JUANG R S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review [J]. J Taiwan Inst Chem Eng, 2017, 71: 214-234.
PLAZA M G, GONZÁLEZ A S, PIS J J, et al. Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture [J]. Appl Energy, 2014, 114: 551-562.
DENG S B, WEI H R, CHEN T, et al. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures [J]. Chem Eng J, 2014, 253: 46-54.
SERAFIN J, OUZZINE M, CRUZ JR O F, et al. Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture [J]. Waste Manage (Oxford), 2021, 136: 273-282.
SERAFIN J, CRUZ JR O F. Promising activated carbons derived from common oak leaves and their application in CO2 storage [J]. J Environ Chem Eng, 2022, 10(3): 107642.
KAMRAN U, RHEE K Y, LEE S Y, et al. Solvent-free conversion of cucumber peels to N-doped microporous carbons for efficient CO2 capture performance [J]. J Cleaner Prod, 2022, 369: 133367.
ZHANG X F, ELSAYED I, SONG X Z, et al. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture [J]. Sci Total Environ, 2020, 748: 142465.
COROMINA H M, WALSHA D A, MOKAYA R. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications [J]. J Mater Chem A, 2016, 4(1): 280-289.
YANG J, YUE L M, HU X, et al. Efficient CO2 capture by porous carbons derived from coconut shell [J]. Energy Fuels, 2017, 31(4): 4287-4293.
ROUZITALAB Z, MAKLAVANY D M, RASHIDI A, et al. Synthesis of N-doped nanoporous carbon from walnut shell for enhancing CO2 adsorption capacity and separation [J]. J Environ Chem Eng, 2018, 6(5): 6653-6663.
LI D W, MA T F, ZHANG R L, et al. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char [J]. Fuel, 2015, 139: 68-70.
KHOSROWSHAHI M S, MASHHADIMOSLEM H, EMROOZ H B M, et al. Green self-activating synthesis system for porous carbons: Celery biomass wastes as a typical case for CO2 uptake with kinetic, equilibrium and thermodynamic studies [J]. Diamond Relat Mater, 2022, 127: 109204.
WANG P, GUO Y F, ZHAO C W, et al. Biomass derived wood ash with amine modification for post-combustion CO2 capture [J]. Appl Energy, 2017, 201: 34-44.
CHIANG A S T, CHAO K T. Membranes and films of zeolite and zeolite-like materials [J]. J Phys Chem Solids, 2001, 62(9/10): 1899-1910.
KUMAR S, SRIVASTAVA R, KOH J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives [J]. J CO2 Util, 2020, 41: 101251.
JÄNCHEN J, MÖHLMANN D T F, STACH H. Water and carbon dioxide sorption properties of natural zeolites and clay minerals at martian surface temperature and pressure conditions [M]//Studies in surface science and catalysis. Elsevier, 2007, 170: 2116-2121.
PANDA D, KUMAR E A, SINGH S K. Amine modification of binder-containing zeolite 4A bodies for post-combustion CO2 capture [J]. Ind Eng Chem Res, 2019, 58(13): 5301-5313.
YAO J F, LI D, WANG H T. The application of metal-organic frameworks to CO2 capture [M]//Eco- and renewable energy materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 233-257.
MAHAJAN S, LAHTINEN M. Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures [J]. J Environ Chem Eng, 2022, 10(6): 108930.
葛慧, 苗媛媛, 赵云霞, 等. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1): 32-40.
LEE S Y, PARK S J. A review on solid adsorbents for carbon dioxide capture [J]. J Ind Eng Chem, 2015, 23: 1-11.
KUNDU N, SARKAR S. Porous organic frameworks for carbon dioxide capture and storage [J]. J Environ Chem Eng, 2021, 9(2): 105090.
D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture: Prospects for new materials [J]. Angew Chem Int Edit, 2010, 49(35): 6058-6082.
BLAMEY J, ANTHONY E J, WANG J, et al. The calcium looping cycle for large-scale CO2 capture [J]. Prog Energy Combust Sci, 2010, 36(2): 260-279.
MÜLLER S, FUCHS J, SCHMID J C, et al. Experimental development of sorption enhanced reforming by the use of an advanced gasification test plant [J]. Int J Hydrogen Energy, 2017, 42(50): 29694-29707.
赖晓玲, 周微, 臧甲忠, 等. 氧化钙基吸收剂低温循环吸收二氧化碳的研究进展[J].无机盐工业, 2023, 55(5): 16-23.
罗聪, 罗童, 徐勇庆, 等. 钙基吸附剂的CO2捕集及其热化学储能研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 101-109.
杨彬, 余钟亮, 李春玉, 等. CeO2掺杂对CaO基吸收剂CO2捕获性能的影响[J]. 燃料化学学报, 2019, 47(3): 344-351.
YOON H J, LEE K B. Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption [J]. Chem Eng J, 2019, 355: 850-857.
HU Y C, LIU W Q, SUN J, et al. Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture [J]. Chem Eng J, 2015, 273: 333-343.
PATEL H A, BYUN J, YAVUZ C T. Carbon dioxide capture adsorbents: Chemistry and methods [J]. ChemSusChem, 2017, 10(7): 1303-1317.
RASHIDI N A, YUSUP S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture [J]. J CO2 Util, 2016, 13: 1-16.
LEI L F, BAI L, LINDBRÅTHEN A, et al. Carbon membranes for CO2 removal: Status and perspectives from materials to processes [J]. Chem Eng J, 2020, 401: 126084.
曹映玉, 杨恩翠, 王文举. 二氧化碳膜分离技术[J]. 精细石油化工, 2015, 32(1): 53-60.
NOROUZI A M, LAY E N, HOSSEINKHANI A, et al. Functionalized nanodiamonds in polyurethane mixed matrix membranes for carbon dioxide separation [J]. Results Mater, 2022, 13: 100243.
FAJRINA N, YUSOF N, ISMAIL A F, et al. Metal organic framework (MOF)-based composite filler incorporated thin film nanocomposite of hollow fiber membrane for carbon dioxide permeance [J]. Mater Today Proc, 2022, 65: 3060-3065.
ALAMI A H, HAWILI A A, TAWALBEH M, et al. Materials and logistics for carbon dioxide capture, storage and utilization [J]. Sci Total Environ, 2020, 717: 137221.
申屠佩兰. 二氧化碳膜分离材料研究进展[J]. 能源化工, 2021, 42(5): 27-32.
ALLEN B. Dry water: US 4008170 [P]. 1977-02-15.
SALEH K, FORNY L, GUIGON P, et al. Dry water: From physico-chemical aspects to process-related parameters [J]. Chem Eng Res Des, 2011, 89(5): 537-544.
严涵, 于小荣, 吉仁静, 等. 干水法制备核壳聚合物微球及其性能评价[J]. 精细化工, 2023, 40(1): 192-199.
BINKS B P, MURAKAMI R. Phase inversion of particle-stabilized materials from foams to dry water [J]. Nat Mater, 2006, 5(11): 865-869.
张地伟. 硅基干水固化气体的动力学特性研究[D]. 北京: 北京工商大学, 2016.
梁华杰. 干水的性能及水合物储气研究[D]. 广州: 华南理工大学, 2010.
CARTER B O, WANG W X, ADAMS D J, et al. Gas storage in ‘dry water’ and ‘dry gel’ clathrates [J]. Langmuir, 2010, 26(5): 3186-3193.
DAWSON R, STEVENS L A, WILLIAMS O S A, et al. ‘Dry bases’: Carbon dioxide capture using alkaline dry water [J]. Energy Environ Sci, 2014, 7(5): 1786-1791.
Al-WABEL M, ELFAKI J, USMAN A, et al. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture [J]. Environ Res, 2019, 174: 69-79.
WEI L J, WEI W, XUE N, et al. One-step synthesis of solid-liquid composite microsphere for CO2 capture [J]. ACS Appl Mater Interfaces, 2021, 13(4): 5814-5822.
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution