浏览全部资源
扫码关注微信
华东理工大学 化工学院 大型工业反应器工程教育部工程技术研究中心,上海 200237
Published:25 February 2024,
Received:30 March 2023,
Revised:31 May 2023,
扫 描 看 全 文
王晗斌,张鹏,杨帆等.晶种辅助预晶化法合成纳米ZSM-5分子筛及其在丙烷芳构化反应中的应用[J].低碳化学与化工,2024,49(02):67-73.
WANG Hanbin,ZHANG Peng,YANG Fan,et al.Synthesis of nano ZSM-5 molecular sieve by seed-assisted and pre-crystallization and its application in aromatization of propane[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):67-73.
王晗斌,张鹏,杨帆等.晶种辅助预晶化法合成纳米ZSM-5分子筛及其在丙烷芳构化反应中的应用[J].低碳化学与化工,2024,49(02):67-73. DOI: 10.12434/j.issn.2097-2547.20230113.
WANG Hanbin,ZHANG Peng,YANG Fan,et al.Synthesis of nano ZSM-5 molecular sieve by seed-assisted and pre-crystallization and its application in aromatization of propane[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):67-73. DOI: 10.12434/j.issn.2097-2547.20230113.
在丙烷芳构化反应中,常规分子筛催化剂易积炭失活,导致催化性能及使用寿命均不理想。采用全硅分子筛Silicalite-1(S-1)作为晶种,结合晶种法和预晶化法合成了纳米ZSM-5分子筛(ZSM-5-Nano)。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和N
2
物理吸/脱附表征了ZSM-5-Nano的结构。结果表明,ZSM-5-Nano是由粒径为50 nm左右的小颗粒堆积而成的,其比表面积高达395 m
2
/g,同时富含晶间介孔。将ZSM-5-Nano负载Zn后得到催化剂Zn-ZSM-5-Nano,然后在固定床反应器中评价了该催化剂在丙烷芳构化反应(
n
(N
2
):
n
(C
3
H
8
) = 7:3、空速为3000 h
-1
、反应温度为550 °C)中的催化性能。结果表明,Zn/ZSM-5-Nano拥有相对温和的酸性质,在丙烷芳构化反应中表现出了良好的催化性能,5 h内的丙烷转化率和轻芳烃(苯、甲苯和二甲苯)选择性分别高达88.4%和86.7%,且在5 h内基本不失活,催化性能优于微米ZSM-5分子筛(水热法)负载Zn催化剂和纳米ZSM-5分子筛(预晶化法)负载Zn催化剂。构效分析结果表明,Zn/ZSM-5-Nano的形貌和酸性共同作用提升了其催化性能,更短的扩散距离和更温和的酸性有效延缓了积炭的生成。
In the aromatization reaction of propane
the conventional molecular sieve catalyst is prone to carbon deposition and deactivation
resulting in unsatisfactory catalytic performance and service life. Nanometer ZSM-5 molecular sieve (ZSM-5-Nano) was synthesized with pure silica molecular sieve Silicalite-1 (S-1) as seed by combination with seed method and pre-crystallization method. The structure of ZSM-5-Nano was characterized by scanning electron microscopy (SEM)
transmission electron microscopy (TEM)
X-ray diffraction (XRD) and N
2
physical adsorption/desorption. The results show that ZSM-5-Nano is composed of small particles with a particle size of about 50 nm
its specific surface area is up to 395 m
2
/g
and it is rich in intergranular mesopores. The catalyst Zn-ZSM-5-Nano was prepared by loading Zn with ZSM-5-Nano
and then the catalytic performance of the catalyst for the aromatization reaction (
n
(N
2
):
n
(C
3
H
8
) = 7:3
space velocity of 3000 h
-1
and reaction temperature of 550 °C) of propane was evaluated in a fixed bed reactor. The results show that Zn/ZSM-5-Nano has relatively mild acid properties
and shows good catalytic performance in the aromatization reaction of propane. The conversion rate of propane and the selectivity of light aromatics (benzene
toluene and xylene) within 5 h are as high as 88.4% and 86.7%
respectively
and the activity is stable within 5 h. The catalytic performance is better than that of the micrometer ZSM-5 molecular sieve (hydrothermal method) supported Zn cat
alyst and the nanometer ZSM-5 molecular sieve (pre-crystallization method) supported Zn catalyst. The results of structure activity analysis show that the better catalytic performance of Zn/ZSM-5-Nano is the result of the combination of morphology and acidity
and the shorter diffusion distance and milder acidity effectively delay the formation of carbon deposition.
丙烷芳构化晶种辅助预晶化法纳米纳米ZSM-5分子筛
propane aromatizationseed inducedpre-crystallizationnano ZSM-5 molecular sieve
LI Q Y, ZHANG F Q, JARVIS J, et al. Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane [J]. Fuel, 2018, 219: 331-339.
XIANG Y Z, WANG H, CHENG J H, et al. Progress and prospects in catalytic ethane aromatization [J]. Catalysis Science & Technology, 2018, 8(6): 1500-1516.
BHAN A, NICHOLAS DELGASS W. Propane aromatization over HZSM‐5 and Ga/HZSM‐5 catalysts [J]. Catalysis Reviews, 2008, 50(1): 19-151.
KUMAR N, LINDFORS L E. Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane [J]. Applied Catalysis A General, 1996, 147(1): 175-187.
YIN X, CHU N, YANG J, et al. Synthesis of the nanosized MCM-22 zeolite and its catalytic performance in methane dehydro-aromatization reaction [J]. Catalysis Communications, 2014, 43: 218-222.
LEUNG A K, CHENG Y, LAM F. System and method for time stamping and transferring intellectual property right [Z]. 2021.
MIGLIORI M, ALOISE A, CATIZZONE E, et al. Simplified kinetic modeling of propane aromatization over Ga-ZSM-5 zeolites: Comparison with experimental data [J]. Industrial & Engineering Chemistry Research, 2017, 56(37): 10309-10317.
吴毅恒, 张耀远, 吴芹. 镓改性HZSM-5催化低碳烷烃芳构化研究进展[J]. 化工进展, 2023, 42(10): 5162-5178.
WU Y H, ZHANG Y Y, WU Q. Research progress of gallium modified HZSM-5 catalysts for aromatization of light alkanes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5162-5178.
XU G H, ZHU X D. A core-shell structured Zn/ZSM-5@MCM-41 catalyst: Preparation and enhanced catalytic properties in propane aromatization [J]. Fuel, 2022, 317: 123546.
LIM Y H, GIM M Y, KIM H, et al. Top-down HCl treatment to prepare highly active Ga species in Ga/ZSM-5 for propane aromatization [J]. Fuel Processing Technology, 2022, 227: 107107.
ZHOU W, LIU J, LIN L, et al. Enhanced dehydrogenative aromatization of propane by incorporating Fe and Pt into the Zn/HZSM-5 catalyst [J]. Industrial & Engineering Chemistry Process Design and Development, 2018, 57(48): 16246-16256.
OSEKE G G, ATTA A Y, MUKHTAR B, et al. Increasing the catalytic stability of microporous Zn/ZSM-5 with copper for enhanced propane aromatization [J]. Journal of King Saud University, 2020, 33(8): 531-538.
OSEKE G G, PETER E E, ATTA A Y, et al. Improved aromatic yield and toluene selectivity in propane aromatization over Zn-Co/ZSM-5: Effect of metal composition and process conditions [J]. Journal of Porous Materials, 2022.
赵星岭, 齐国栋, 王强. Ga改性Ga/ZSM-5分子筛的结构、性质及其催化丙烷芳构化的固体核磁共振波谱研究[J]. 高等学校化学学报, 2020, 41(12): 2681-2689.
ZHAO X L, QI G D, WANG Q. Structure, nature and activity of Ga species for propane aromatization in Ga/ZSM-5 revealed by solid-state NMR spectroscopy [J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2681-2689.
李艳秋, 杨云峰, 高俊华. 丙烷芳构化反应及其催化剂的研究[J]. 当代化工, 2023, 52(2): 428-434.
LI Y Q, YANG Y F, GAO J H. Study on aromatization of propane and its catalysts [J]. Contemporary Chemical Industry, 2023, 52(2): 428-434.
SUN Y, WEI L H, ZHANG Z, et al. Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: A review [J]. Energy & Fuels, 2023, 37(3): 1657-1677.
FAN C, WANG Y, LI H, et al. Seed-induced synthesis of multilamellar ZSM-5 nanosheets directed by amphiphilic organosilane [J]. New Journal of Chemistry, 2018, 42: 17043-17055.
JAVDANI A, AHMADPOUR J, YARIPOUR F. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review [J]. Microporous and Mesoporous Materials, 2019, 284: 443-458.
JIN J S, CAO L, HU Q X, et al. An efficient synthesis of hydrothermally stable mesoporous aluminosilicates with significant decreased organic templates by a seed-assisted approach [J]. Journal of Materials Chemistry A, 2014, 2(21): 7853-7861.
NADA M H, LARSEN S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites [J]. Microporous & Mesoporous Materials, 2016, 239: 444-452.
ZHANG H B, HU Z J, HUANG L, et al. Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: Effects of mesoporosity and acidity [J]. ACS Catalysis, 2015, 5(4): 2548-2558.
GUO S, WU Y S, JIN T, et al. Controllable alkylation of benzene with mixed olefins for producing C8-C15 aromatics in jet fuel [J]. Fuel, 2020, 275: 117890.
侯焕娣, 黄崇品, 陈标华. 纳米Zn/HZSM-5分子筛催化丙烷芳构化[J]. 化学反应工程与工艺, 2006, (4): 300-304.
HOU H D, HUANG C P, CHEN B H. Aromatization of propane over nanosized Zn/HZSM-5 zeolite [J]. Chemical Reaction Engineering and Technology, 2006, (4): 300-304.
SHEN K, WANG N, CHEN X D, et al. Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: Toward efficient and cost-effective catalysts for the MTA reaction [J]. Catalysis Science & Technology, 2017, 7: 5143-5153.
XUE T, DONG L L, ZHANG Y, et al. Green and cost-effective preparation of small-sized ZSM-5 [J]. Acta Physico-Chimica Sinica, 2018, 34(8): 920-926.
DAI C, LI J J, ZHANG A, et al. Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization [J]. 2017, 7: 37915-37922.
SU X F, ZAN W, BAI X F, et al. Synthesis of microscale and nanoscale ZSM-5 zeolites: Effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance [J]. Catalysis Science & Technology, 2017, (9):1943-1952.
WU G, WU W, WANG X, et al. Nanosized ZSM-5 zeolites: Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene [J]. Microporous & Mesoporous Materials, 2013, 180: 187-195.
杨文建, 孟广莹, 李晓云, 等. 球形ZSM-5分子筛催化剂的制备及其在甲醇制芳烃反应中的应用[J]. 石油炼制与化工, 2017, 48(4): 87-91.
YANG W J, MENG G Y, LI X YU, et al. Preparation of spherical ZSM-5 zeolite catalyst and its application in MTA process [J]. Petroleum Processing and Petrochemicals, 2017, 48(4): 87-91.
SONG Y, XU Y B, SUZUKI Y, et al. A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K [J]. Applied Catalysis A: General, 2014, 482: 387-396.
0
Views
163
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution