1.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
2.国家能源集团宁夏煤业有限责任公司煤炭化学工业技术研究院,宁夏 银川 750411
3.国家煤及煤化工产品质量检验检测中心(宁夏) 宁夏计量质量检验检测研究院,宁夏 银川 750200
扫 描 看 全 文
GAO Xinhua, XIA Shiqin, LIANG Jie, et al. Research progress on active phases regulation of iron-based catalysts and their CO2 catalytic hydrogenation to linear
GAO Xinhua, XIA Shiqin, LIANG Jie, et al. Research progress on active phases regulation of iron-based catalysts and their CO2 catalytic hydrogenation to linear
线性,α,-烯烃(LAOs)作为重要的化工原料,通常用于共聚单体、合成润滑油、增塑剂用醇和油品添加剂。以二氧化碳(CO,2,)和氢气(H,2,)作为原料,通过CO,2,加氢反应生产LAOs可以缓解温室效应、实现CO,2,高值化利用,具有重要意义。CO,2,加氢制LAOs一般包括逆水煤气变换(RWGS)和费托合成(FTS)两个步骤,四氧化三铁(Fe,3,O,4,)和碳化铁(,χ,-Fe,5,C,2,等)可分别催化RWGS和FTS反应,因此Fe基催化剂是当前的研究热点。介绍了Fe基催化剂的物相演变过程及其失活机制,重点分析了载体、助剂和表面改性对促进,χ,-Fe,5,C,2,活性相生成、调控Fe,3,O,4,/,χ,-Fe,5,C,2,比例(物质的量之比)和维持,χ,-Fe,5,C,2,相稳定的作用,总结了Fe基催化剂上CO,2,加氢制LAOs面临的主要问题以及未来的研究方向。
As an important chemical raw material, linear ,α,-olefins (LAOs) are usually used for the copolymerization of monomers and the synthesis of lubricants, plasticizers and oil additives. It is of great significance to use carbon dioxide (CO,2,) and hydrogen (H,2,) as raw materials to produce LAOs through CO,2, hydrogenation reaction, which can alleviate the greenhouse effect and realize high value utilization of CO,2,. CO,2, hydrogenation to LAOs generally consists of two steps: Reverse water gas shift (RWGS) and Fischer-Tropsch synthesis (FTS). Ferroferric oxide (Fe,3,O,4,) and iron carbide (,χ,-Fe,5,C,2 ,et al.) can catalyze RWGS and FTS reactions, respectively, so Fe-based catalysts are currently the focus of research. The phase evolution process and deactivation mechanism of Fe-based catalysts were discussed. The effects of supports, promoters and surface modification on promoting the generation of ,χ,-Fe,5,C,2, active phase, regulating the ratio of Fe,3,O,4,/,χ,-Fe,5,C,2 ,(mole fraction), and maintaining the stability of ,χ,-Fe,5,C,2, phase were emphatically analyzed. The main problems and future research directions of CO,2, hydrogenation to LAOs on Fe-based catalysts were summarized.
线性α-烯烃CO2加氢Fe基催化剂活性相
linear α-olefinsCO2 hydrogenationFe-based catalystsactive phases
WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel [J]. Nat Commun, 2017, 8(1): 15174.
ZHANG Q, WANG T J, LI Y P, et al. Olefin-rich gasoline-range hydrocarbons from oligomerization of bio-syngas over Ni/ASA catalyst [J]. Fuel Process Technol, 2017, 167: 702-710.
张超, 张玉龙, 朱明辉, 等. CO2高值化利用新途径: 铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展, 2021, 40(2): 577-593.
刘赛赛, 姚金刚, 陈冠益, 等. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报, 2023, 51(1): 34-52.
GAO X H, THACHAPAN A, MA Q X, et al. Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design [J]. Energy Chem, 2020, 2(4): 2589-7780.
CHEN J Y, WANG X, WU D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution [J]. Fuel, 2019, 239: 44-52.
LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of carbon dioxide to lower olefins [J]. ACS Catal, 2017, 7(12): 8544-8548.
GUO L S, CUI Y, LI H J, et al. Selective formation of linear-alpha olefins (LAOs) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst [J]. Catal Commun, 2019, 130: 105759.
ZHANG C, XU M J, YANG Z X, et al. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins [J]. Appl Catal B, 2021, 295: 2121-2133.
张国利. 低碳烯烃齐聚制α-烯烃的研究[D]. 西安: 西安石油大学, 2008.
崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3): 724-730+737.
JONATHAN A, EAGAN N, DAVID B, et al. Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst [J]. Catal Sci Technol, 2021, 11(10): 3599-3608.
KONUSPAYEV S, KADIRBEKOV K, NURBAYEVA R, et al. New catalysts based on the heteropoly acid-zeolite system for the synthesis of higher α-olefins by paraffin cracking [J]. Catal Ind, 2011, 3: 76-80.
史建公, 刘志坚, 刘春生. 二氧化碳甲烷化研究进展[J]. 中外能源, 2018, 23(10): 70-87.
路香港, 翟岩亮, 张健, 等. CO/CO2加氢制低碳烯烃催化剂研究进展[J]. 化工科技, 2021, 29(4): 70-74.
ZHU J, WANG P, ZHANG X B, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation [J]. Sci Adv, 2022, 8(5): eabm3629.
LI Z L, WU W L, WANG M L, et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins [J]. Nat Commun, 2022, 13: 2936.
ZHANG W N, WEI Y X. Regulation of product distribution in CO2 hydrogenation to light olefins [J]. Chem, 2022, 8(5):1170-1173.
WANG L K, HAN Y, WEI J, et al. Dynamic confinement catalysis in Fe-based CO2 hydrogenation to light olefins [J]. Appl Catal B, 2023, 328: 122506.
WEBER D, HE T, WONG M, et al. Recent advances in the mitigation of the catalyst deactivation of CO2 hydrogenation to light olefins [J]. Catalysts, 2021, 11(12): 1447.
LIU X L, WANG M C, ZHOU C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34 [J]. Chem Commun, 2018, 54(2): 140-143.
WANG S, ZHANG L, ZHANG W Y, et al. Selective conversion of CO2 into propene and butene [J]. Chem, 2020, 6(12): 3344-3363.
AMOYAL M, VIDRUK-NEHEMYA R, LANDAU M V, et al. Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation [J]. J Catal, 2017, 348: 29-39.
LIU J H, ZHANG G H, JIANG X, et al. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons [J]. Catal Today, 2021, 371: 162-170.
DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour [J]. Chem Soc Rev, 2008, 37(12): 2758-2781.
ZHAO T L, JING L Z, BI J Z. Poisoning of iron catalyst by COS in syngas for Fischer-Tropsch synthesis [J]. J Mol Catal, 1994, 94(2): 255-261.
RIEDEL T, SCHULZ H, SCHAUB G, et al. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst [J]. Top Catal, 2003, 26(1): 41-54.
MAHAJAN D, G TLICH P, ENSLING J, et al. Evaluation of nanosized iron in slurry-phase Fischer-Tropsch synthesis [J]. Energy Fuels, 2003, 17(5): 1210-1221.
LI S, O'BRIEN R J, MEITZNER G D, et al. Structural analysis of unpromoted Fe-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy [J]. Appl Catal A, 2001, 219(1): 215-222.
BUTT J B. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts part I: Characterization studies [J]. Catal Lett, 1990, 7(1): 61-81.
MACHOCKI A. Formation of carbonaceous deposit and its effect on carbon monoxide hydrogenation on iron-based catalysts [J]. Appl Catal, 1991, 70(1): 237-252.
GALUSZKA J, SANG T, SAWICKI J A. Study of carbonaceous deposits on Fischer-Tropsch oxide-supported iron catalysts [J]. J Catal, 1992, 136(1): 96-109.
XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts [J]. J Phys Chem B, 2005, 109(6): 2392-2403.
DWYER D J, SOMORJAI G A. Hydrogenation of CO and CO2 over iron foils: Correlations of rate, product distribution, and surface composition [J]. J Catal, 1978, 52(2): 291-301.
SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis [J]. Appl Catal A, 1999, 186(1): 3-12.
BUKUR D B, OKABE K, ROSYNEK M P, et al. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: I. Characterization studies [J]. J Catal, 1995, 155(2): 353-365.
GUO L S, SUN J, JI X W, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts [J]. Commun Chem, 2018, 1(1): 11.
YAO B Z, XIAO T C, MAKGAE O A, et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst [J]. Nat Commun, 2020, 11: 6395.
TU W F, SUN C, ZHANG Z Z, et al. Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins [J]. Appl Catal B, 2021, 298: 120567.
XU M J, LIU X L, CAO C X, et al. Ternary Fe-Zn-Al spinel catalyst for CO2 hydrogenation to linear α-olefins: Synergy effects between Al and Zn [J]. ACS Sustain Chem Eng, 2021, 9(41): 13818-13830.
ZHANG Z Q, HUANG G X, TANG X L, et al. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation [J]. Fuel, 2022, 309: 122105.
WANG S W, WU T J, LIN J, et al. Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins [J]. ACS Catal, 2020, 10(11): 6389-6401.
CHOI Y H, JANG Y J, PARK H M, et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels [J]. Appl Catal B, 2017, 202: 605-610.
KHAN M K, BUTOLIA P, JO H, et al. Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlOx bifunctional catalysts [J]. ACS catal, 2020, 10325-10338.
OSA A, LUCAS A D, ROMERO A, et al. Influence of the catalytic support on the industrial Fischer-Tropsch synthetic diesel production [J]. Catal Today, 2011, 176(1): 298-302.
WEI J, YAO R W, HAN Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons [J]. Chem Soc Rev, 2021, 50(19): 10764-10805.
WU T J, LIN J, CHENG Y, et al. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins [J]. ACS Appl Mater Inter, 2018, 10(28): 23439-23443.
MALHI H S, ZHANG Z Z, SHI Y L, et al. The promotional effects of carbon nanotube on Fe5C2-ZnO catalysts for CO2 hydrogenation to heavy olefins [J]. Fuel, 2023, 339: 127267.
WEI C Y, TU W F, JIA L Y, et al. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins [J]. Appl Surf Sci, 2020, 525: 146622.
WU T J, LIN J, CHENG Y, et al. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins [J]. ACS Appl Mater Inter, 2018, 10(28): 23439-23443.
RAMIREZ A, OULD-CHIKH S, GEVERS L, et al. Tandem conversion of CO2 to valuable hydrocarbons in highly concentrated potassium iron catalysts [J]. ChemCatChem, 2019, 11: 2879-2886.
ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst [J]. Angew Chem Inter Edit, 2016, 128(34): 10056-10061.
CUI X J, CHEN S, YANG H H, et al. Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst [J]. Appl Catal B, 2021, 298: 120590.
LIU X L, MA C L, ZHAO W T, et al. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis [J]. J Fuel Chem Tech, 2021, 49(10): 1504-1512.
LIU Y Y, CHEN B J, LIU R, et al. CO2 hydrogenation to olefins on supported iron catalysts: Effects of support properties on carbon-containing species and product distribution [J]. Fuel, 2022, 324: 124649.
ZHANG C, XU M J, YANG Z X, et al. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear alpha-olefins [J]. Appl Catal B, 2021, 295: 120287.
OREGE J I, WEI J, HAN Y, et al. Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO2 hydrogenation [J]. Appl Catal B, 2022, 316: 121640.
ISEOLUWA O J, LIU N, CURIL A C, et al. Boosting CO2 hydrogenation to high-value olefins with highly stable performance over Ba and Na co-modified Fe catalyst [J]. J Energy Chem, 2023, 80: 641-624.
XU Y F, YANG X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products [J]. Science, 2021, 371(6529): 610-613.
ZHANG Z Z, CHEN B J, JIA L J, et al. Unraveling the role of Fe5C2 in CH4 formation during CO2 hydrogenation over hydrophobic iron catalysts [J]. Appl Catal B, 2023, 327: 122449.
ZHANG C, CAO C X, ZHANG Y L, et al. Unraveling the role of zinc on bimetallic Fe5C2-ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon alpha-olefins [J]. ACS Catal, 2021, 11(4): 2121-2133.
陈红贤, 宁文生, 陈春华, 等. Fe2O3晶型对Fe基催化剂的CO2加氢性能影响[J]. 燃料化学学报, 2015, 43(11): 1387-1392.
LIU N, WEI J, XU J, et al. Elucidating the structural evolution of highly efficient Co-Fe bimetallic catalysts for the hydrogenation of CO2 into olefins [J]. Appl Catal B, 2023, 328: 122476.
高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195.
0
Views
8
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution