1.兰州大学 化学化工学院 功能有机分子化学国家重点实验室,甘肃省有色金属化学与资源利用重点实验室,甘肃 兰州 730000
2.中国石油天然气股份有限公司兰州石化分公司,甘肃 兰州 730060
3.中国科学院 兰州化学物理研究所 羰基合成与选择氧化国家重点实验室,甘肃 兰州 730000
扫 描 看 全 文
WANG Yuxuan, ZHANG Huan, YANG Junming, et al. Progress in application of three reactors for carbon dioxide hydrogenation to amide production. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):29-37(2023)
WANG Yuxuan, ZHANG Huan, YANG Junming, et al. Progress in application of three reactors for carbon dioxide hydrogenation to amide production. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):29-37(2023) DOI: 10.12434/j.issn.2097-2547.20230106.
二氧化碳(CO,2,)是主要的温室气体之一,其过度排放对全球气候和环境造成了严重影响。N,N-二甲基甲酰胺(DMF)是一种良好的溶剂以及重要的化工中间体,目前年产量可达百万吨级。利用催化技术将CO,2,与二甲胺(NH(CH,3,),2,)反应制备成高附加值的DMF可以实现CO,2,减排,对社会的可持续发展具有重要意义。反应器在实现上述反应的高效催化过程中起着重要的作用。介绍了在CO,2,催化加氢制DMF中常用的三种反应器(高压反应釜、固定床反应器与浆态床反应器)及其目前的应用情况。高压反应釜由于具有不锈钢外壳以及耐高温、抗腐蚀内胆的结构设计,可适用于含有胺类原料以及需要高压条件的CO,2,加氢制酰胺反应;固定床反应器可以连续化反应,但易出现热点导致催化剂烧结,且传质不具有优势;浆态床反应器既拥有高压反应釜的高传质、传热能力,也能长时间连续反应。由于高压反应釜操作简单、订购成本较低以及应用范围广泛等特点,目前CO,2,加氢制备DMF的反应器依然以高压反应釜为主。随着工业化逐渐提上日程,使用连续化的评价装置(固定床反应器和浆态床反应器)可能会是未来的发展趋势。
The excessive release of carbon dioxide (CO,2,), a major greenhouse gas, has a severe impact on the environment and the world's climate. As a highly effective solvent and a significant chemical intermediate, N,N-dimethylformamide (DMF) is produced annually in quantities of up to one million tons. The utilization of catalytic technology in the synthesis of high value-added DMF from CO,2, with dimethylamine (NH(CH,3,),2,) offers a promising approach to reducing CO,2, emissions, thereby contributing significantly to the sustainable development of society. Achieving efficient catalytic processes for the aforementioned reactions highly relies on the utilization of reactors. Three commonly used reactors (high-pressure reactors, fixed bed reactors, and slurry bed reactors) in the catalytic hydrogenation of CO,2, to DMF were introduced, as well as their current application status. With its stainless-steel casing and inner liner that can withstand high temperatures and corrosion, the high-pressure reactor is suitable for the hydrogenation of CO,2, to amide reactions containing amine raw materials, which requiring high-pressure conditions. The fixed-bed reactor can facilitate continuous reactions, but it is prone to hot spots leading to catalyst sintering, and it has no advantages in mass transfer. The slurry bed reactor boasts exceptional mass and heat transfer capabilities, akin to those of a high-pressure reactor, while also enabling continuous reaction over extended periods of time. High-pressure reactors remain the primary choice for the production of DMF from CO,2, due to their ease of use, low cost, and versatility in application. As industrialization becomes increasingly relevant, the prospect of employing continuous evaluation devices, such as fixed bed reactors and slurry bed reactors, may emerge as the prevailing trend for future development.
CO2催化加氢DMF高压反应釜固定床反应器浆态床反应器
catalytic hydrogenation of CO2DMFhigh-pressure reactorfixed-bed reactorslurry bed reactor
NEMA P, NEMA S, ROY P. An overview of global climate changing in current scenario and mitigation action [J]. Renewable Sustainable Energy Rev, 2012, 16(4): 2329-2336.
BRITISH, PETROLEUM. BP statistical review of world energy 2022 [EB/OL]. (2022-05)[2023-03-24]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdfhttps://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf.
MEEHL G A, WASHINGTON W M, COLLINS W D, et al. How much more global warming and sea level rise? [J]. Science, 2005, 307(5716): 1769-1772.
FEDERSEL C, JACKSTELL R, BELLER M. State-of-the-art catalysts for hydrogenation of carbon dioxide [J]. Angew Chem Int Ed, 2010, 49(36): 6254-6257.
DING S T, JIAO N. N,N-Dimethylformamide: A multipurpose building block [J]. Angew Chem Int Ed, 2012, 51(37): 9226-9237.
吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
马宁. 二甲基甲酰胺的合成方法: 102442923B [P]. 2014-07-16.
FARLOW M W, ADKINS H. The hydrogenation of carbon dioxide and a correction of the reported synthesis of urethans [J]. J Am Chem Soc, 1935, 57(11): 2222-2223.
HAYNES P, SLAUGH L H, KOHNLE J F. Formamides from carbon dioxide, amines and hydrogen in the presence of metal complexes [J]. Tetrahedron Lett, 1970, 11(5): 365-368.
NALE D B, RATH D, PARIDA K M, et al. Amine modified mesoporous Al2O3@MCM-41: An efficient, synergetic and recyclable catalyst for the formylation of amines using carbon dioxide and DMAB under mild reaction conditions [J]. Catal Sci Technol, 2016, 6(13): 4872-4881.
DAS NEVES GOMES C, JACQUET O, VILLIERS C, et al. A diagonal approach to chemical recycling of carbon dioxide: Organocatalytic transformation for the reductive functionalization of CO2 [J]. Angew Chem Int Ed, 2012, 51(1): 187-190.
石钰鑫, 袁廷, 孟婷, 等. 反应釜的原理、操作、注意事项及应用[J]. 科学通报, 2022, 67(20): 2366-2382.
YUAN F L, LI S H, FAN Z T, et al. Shining carbon dots: Synthesis and biomedical and optoelectronic applications [J]. Nano Today, 2016, 11(5): 565-586.
FAN F R, XIE S J, WANG G W, et al. Tribocatalysis: Challenges and perspectives [J]. Sci China Chem, 2021, 64(10): 1609-1613.
LI Y, WANG H W, YOU X, et al. Facile preparation of microporous organic polymers functionalized macroporous hydrophilic resin for selective enrichment of glycopeptides [J]. Anal Chim Acta, 2018, 1030(7): 96-104.
ZHANG L, HAN Z B, ZHAO X Y, et al. Highly efficient ruthenium-catalyzed N-formylation of amines with H2 and CO2 [J]. Angew Chem Int Ed, 2015, 54(21): 6186-6189.
魏俊年. 从实验室研究到工业化生产,以丁奎岭院士为例[EB/OL]. (2021-03-09)[2023-03-24]. https://zhuanlan.zhihu.com/p/355767227https://zhuanlan.zhihu.com/p/355767227.
KRÖCHER O, KÖPPEL R A, FRÖBA M, et al. Silica hybrid gel catalysts containing group(VIII) transition metal complexes: Preparation, structural, and catalytic properties in the synthesis of N,N-dimethylformamide and methyl formate from supercritical carbon dioxide [J]. J Catal, 1998, 178(1): 284-298.
LIU J L, GUO C K, ZHANG Z F, et al. Synthesis of dimethylformamide from CO2, H2 and dimethylamine over Cu/ZnO [J]. Chem Commun, 2010, 46(31): 5770.
朱梓瑞. 固定床反应器颗粒床层内流体流动特性及工程应用研究[D]. 常州: 常州大学, 2021.
赵振兴. 贵金属氧化催化剂颗粒及其固定床反应器的整体优化[D]. 杭州: 浙江大学, 1992.
GUNASEKAR G H, PADMANABAN S, PARK K, et al. An efficient and practical system for the synthesis of N,N-dimethylformamide by CO2 hydrogenation using a heterogeneous Ru xatalyst: From batch to continuous flow [J]. ChemSusChem, 2020, 13(7): 1735-1739.
BARGHI S, PRAKASH A, MARGARITIS A, et al. Flow regime identification in a slurry bubble column from gas holdup and pressure fluctuations analysis [J]. Can J Chem Eng, 2008, 82(5): 865-870.
张艳红, 白志山, 周萍, 等. 气液固三相浆态床反应器研究进展[J]. 化工进展, 2008, 27(10): 1551-1560.
WANG X X, LIN T J, LI J, et al. Direct production of olefins via syngas conversion over Co2C-based catalyst in slurry bed reactor [J]. RSC Adv, 2019, 9(8): 4131-4139.
KRÖCHER O, KÖPPEL R A, BAIKER A. Silica hybrid gel catalysts containing ruthenium complexes: Influence of reaction parameters on the catalytic behaviour in the synthesis of N,N-dimethylformamide from carbon dioxide [J]. J Mol Catal A: Chem, 1999, 140(2): 185-193.
KUHLMANN R, PRÜLLAGE A, KÜNNEMANN K, et al. Process development of the continuously operated synthesis of N,N-dimethylformamide based on carbon dioxide [J]. J CO2 Util, 2017, 22: 184-190.
0
Views
4
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution