浏览全部资源
扫码关注微信
太原工业学院 化学与化工系,山西 太原 030008
Published:25 February 2024,
Received:23 March 2023,
Revised:22 May 2023,
扫 描 看 全 文
高晓庆,郑洪岩,薛彦峰等.乙酰丙酸加氢制备γ-戊内酯催化剂研究进展[J].低碳化学与化工,2024,49(02):35-48.
GAO Xiaoqing,ZHENG Hongyan,XUE Yanfeng,et al.Research progress of catalyst for levulinic acid hydrogenation to γ‑valerolactone[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):35-48.
高晓庆,郑洪岩,薛彦峰等.乙酰丙酸加氢制备γ-戊内酯催化剂研究进展[J].低碳化学与化工,2024,49(02):35-48. DOI: 10.12434/j.issn.2097-2547.20230103.
GAO Xiaoqing,ZHENG Hongyan,XUE Yanfeng,et al.Research progress of catalyst for levulinic acid hydrogenation to γ‑valerolactone[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):35-48. DOI: 10.12434/j.issn.2097-2547.20230103.
催化转化碳中性且可再生的生物质制备液体燃料和精细化学品是实现双碳目标的主要途径之一,
γ
-戊内酯(GVL)可作为绿色溶剂并可用于合成高品位航空燃料。乙酰丙酸(LA)是重要的生物质平台化学品,经催化加氢可制备高附加值产品GVL。首先简要介绍了生物质组成,然后从所采用的均相催化剂、多相催化剂(Ru、Pd、Ni、Cu和双金属)等分类角度重点综述了LA加氢制备GVL的研究进展,详细讨论了催化剂结构性质、反应性能、稳定性、构效关系和反应机理。最后,对LA加氢制备GVL面临的挑战进行了分析,对未来的研究方向和发展趋势作了进一步展望,可为设计大规模商业应用的高活性耐酸性Ru基催化剂提供参考。
Catalytic conversion of carbon-neutral and renewable biomass into liquid fuel and fine chemicals is one of main solutions to achieve carbon peaking and carbon neutrality goals
and
γ
-valerolactone (GVL) can be used as a green solvent and can be synthesized into high-grade aviation fuel. Levulinic acid (LA)
as an important biomass-derived platform chemical
can be catalytically hydrogenated into highly value-added GVL. Biomass composition was briefly introduced first
and then the research progress of LA hydrogenation to GVL was fully reviewed based on the perspective of homogeneous and heterogeneous catalysts (Ru
Pd
Ni
Cu and bimetal). The catalyst structural properties
reaction performance
stability
structure-performance correlation and re
action mechanism were discussed in detail. Finally
the major challenges were analysized
future prospects and development trend for LA hydrogenation to GVL were further prospected
which can provide a basis for designing high-activity and acid-resisting Ru-based catalysts with large-scale commercial applications.
生物质乙酰丙酸加氢γ-戊内酯催化剂
biomasslevulinic acidhydrogenationγ-valerolactonecatalyst
WRIGHT W R, PALKOVITS R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone [J]. ChemSusChem, 2012, 5(9): 1657-1667.
杜贤龙, 刘永梅, 王建强, 等. 碳纳米管担载纳米Ir催化生物质基乙酰丙酸合成γ-戊内酯[J]. 催化学报, 2013, 34(5): 993-1001.
DU X L, LIU Y M, WANG J Q, et al. Catalytic conversion of biomass-derived levulinic acid into γ-valerolactone using iridium nanoparticles supported on carbon nanotubes [J]. Chinese Journal of Catalysis, 2013, 34(5): 993-1001.
龙向东, 孙鹏, 李泽龙, 等. 水滑石基磁性Co/Al2O3催化剂在乙酰丙酸加氢制备γ-戊内酯反应中的应用[J]. 催化学报, 2015, 36(9): 1512-1518.
LONG X D, SUN P, LI Z L, et al. Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone [J]. Chinese Journal of Catalysis, 2015, 36(9): 1512-1518.
BOND J Q, ALONSO D M, WANG D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels [J]. Science, 2010, 327(5969): 1110-1114.
LUTERBACHER J S, RAND J M, ALONSO D M, et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone [J]. Science, 2014, 343(6168): 277-280.
LI C Z, ZHAO X C, WANG A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels [J]. Chemical Reviews, 2015, 115(21): 11559-11624.
SERRANO-RUIZ J C, DUMESIC J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels [J]. Energy & Environmental Science, 2011, 4(1): 83-99.
RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization: Improving lignin processing in the biorefinery [J]. Science, 2014, 344(6185): 1246843.
TILMAN D, SOCOLOW R, FOLEY J A, et al. Beneficial biofuels—The food, energy, and environment trilemma [J]. Science, 2009, 325(5938): 270-271.
HE M Y, SUN Y H, HAN B X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality [J]. Angewandte Chemie International Edition, 2022, 61(15): e202112835.
MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability [J]. Chemical Reviews, 2018, 118(2): 505-613.
LIN L F, HAN X, HAN B X, et al. Emerging heterogeneous catalysts for biomass conversion: Studies of the reaction mechanism [J]. Chemical Society Reviews, 2021, 50(20): 11270-11292.
LEE K, JING Y X, WANG Y Q, et al. A unified view on catalytic conversion of biomass and waste plastics [J]. Nature Reviews Chemistry, 2022, 6(9): 635-652.
SARAVANAN A, SENTHIL K P, JEEVANANTHAM S, et al. Recent advances and sustainable development of biofuels production from lignocellulosic biomass [J]. Bioresource Technology, 2022, 344: 126203.
LUO X L, LI Y D, GUPTA N K, et al. Protection strategies enable selective conversion of biomass [J]. Angewandte Chemie International Edition, 2020, 59(29): 11704-11716.
MARTÍNEZ A T. How to break down crystalline cellulose [J]. Science, 2016, 352(6289): 1050-1051.
SHROTRI A, KOBAYASHI H, FUKUOKA A. Cellulose depolymerization over heterogeneous catalysts [J]. Accounts of Chemical Research, 2018, 51(3): 761-768.
ESPOSITO D. Controlled cellulose decomposition [J]. Nature Catalysis, 2019, 2(10): 832-832.
MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels [J]. Energy & Environmental Science, 2016, 9(4): 1144-1189.
DI MENNO DI BUCCHIANICO D, WANG Y J, BUVAT J C, et al. Production of levulinic acid and alkyl levulinates: A process insight [J]. Green Chemistry, 2022, 24(2): 614-646.
XU C P, ARANCON R A D, LABIDI J, et al. Lignin depolymerisation strategies: Towards valuable chemicals and fuels [J]. Chemical Society Reviews, 2014, 43(22): 7485-7500.
ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for performing lignin-first biorefining [J]. Energy & Environmental Science, 2021, 14(1): 262-292.
SETHUPATHY S, MURILLO MORALES G, GAO L, et al. Lignin valorization: Status, challenges and opportunities [J]. Bioresource Technology, 2022, 347: 126696.
CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals [J]. Chemical Reviews, 2007, 107(6): 2411-2502.
ALONSO D M, BOND J Q, DUMESIC J A. Catalytic conversion of biomass to biofuels [J]. Green Chemistry, 2010, 12(9): 1493.
BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited [J]. Green Chemistry, 2010, 12(4): 539-554.
GEILEN F M A, ENGENDAHL B, HARWARDT A, et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system [J]. Angewandte Chemie International Edition, 2010, 49(32): 5510-5514.
DENG L, LI J, LAI D M, et al. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply [J]. Angewandte Chemie International Edition, 2009, 121(35): 6651-6654.
ORTIZ-CERVANTES C, FLORES-ALAMO M, GARCÍA J J. Hydrogenation of biomass-derived levulinic acid into γ-valerolactone catalyzed by palladium complexes [J]. ACS Catalysis, 2015, 5(3): 1424-1431.
ZADA B, ZHU R, WANG B, et al. A practical and concise homogeneous nickel catalyst for efficient solvent-free synthesis of γ-valerolactone [J]. Green Chemistry, 2020, 22(11): 3427-3432.
LIU Z, YANG Z, WANG P, et al. Co-catalyzed hydrogenation of levulinic acid to γ-valerolactone under atmospheric pressure [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18236-18241.
AMENUVOR G, MAKHUBELA B C E, DARKWA J. Efficient solvent-free hydrogenation of levulinic acid to γ-valerolactone by pyrazolylphosphite and pyrazolylphosphinite ruthenium(II) complexes [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6010-6018.
OMORUYI U, PAGE S J, APPS S L, et al. Synthesis and characterisation of a range of Fe, Co, Ru and Rh triphos complexes and investigations into the catalytic hydrogenation of levulinic acid [J]. Journal of Organic Chemistry, 2021, 935: 121650.
SLAGMAAT C A M R, DELGOVE M A F, STOUTEN J, et al. Solvent-free hydrogenation of levulinic acid to γ-valerolactone using a Shvo catalyst precursor: Optimization, thermodynamic insights, and life cycle assessment [J]. Green Chemistry, 2020, 22(8): 2443-2458.
YAN Z P, LIN L, LIU S J. Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst [J]. Energy & Fuels, 2009, 23(8): 3853-3858.
AL-SHAAL M G, WRIGHT W R H, PALKOVITS R. Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions [J]. Green Chemistry, 2012, 14(5): 1260-1263.
GALLETTI A M R, ANTONETTI C, DE LUISE V, et al. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid [J]. Green Chemistry, 2012, 14(3): 688-694.
WETTSTEIN S G, BOND J Q, ALONSO D M, et al. RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone [J]. Applied Catalysis B: Environmental, 2012, 117/118: 321-329.
TAN J J, CUI J L, DENG T S, et al. Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported ruthenium catalyst [J]. ChemCatChem, 2015, 7(3): 508-512.
PISKUN A S, FTOUNI J, TANG Z, et al. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: Effect of catalyst synthesis protocols on activity [J]. Applied Catalysis A: General, 2018, 549: 197-206.
ABDELRAHMAN O A, HEYDEN A, BOND J Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C [J]. ACS Catalysis, 2014, 4(4): 1171-1181.
XIAO C X, GOH T W, QI Z Y, et al. Conversion of levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts [J]. ACS Catalysis, 2016, 6(2): 593-599.
TAN J J, CUI J L, CUI X J, et al. Graphene-modified Ru nanocatalyst for low-temperature hydrogenation of carbonyl groups [J]. ACS Catalysis, 2015, 5(12): 7379-7384.
CAO W X, LUO W H, GE H G, et al. UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone [J]. Green Chemistry, 2017, 19(9): 2201-2211.
FTOUNI J, MUÑOZ-MURILLO A, GORYACHEV A, et al. ZrO2 is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone [J]. ACS Catalysis, 2016, 6(8): 5462-5472.
RUPPERT A M, GRAMS J, JEDRZEJCZYK M, et al. Titania-supported catalysts for levulinic acid hydrogenation: Influence of support and its impact on γ-valerolactone yield [J]. ChemSusChem, 2015, 8(9): 1538-1547.
LI S P, WANG Y Y, YANG Y D, et al. Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions [J]. Green Chemistry, 2019, 21(4): 770-774.
ZHU S H, CEN Y Y, YANG M, et al. Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation [J]. Applied Catalysis B: Environmental, 2017, 211: 89-97.
ZHU S H, WANG J G, FAN W B. Graphene-based catalysis for biomass conversion [J]. Catalysis Science & Technology, 2015, 5(8): 3845-3858.
SHEN K, CHEN X D, CHEN J Y, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis [J]. ACS Catalysis, 2016: 5887-5903.
EDDAOUDI M, SAVA D F, EUBANK J F, et al. Zeolite-like metal-organic frameworks (ZMOFs): Design, synthesis, and properties [J]. Chemical Society Reviews, 2015, 44(1): 228-249.
WEI Z Z, LI X F, DENG J, et al. Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon [J]. Molecular Catalysis, 2018, 448: 100-107.
WEI Z J, LOU J T, SU C M, et al. An efficient and reusable embedded Ru catalyst for the hydrogenolysis of levulinic acid to γ-valerolactone [J]. ChemSusChem, 2017, 10(8): 1720-1732.
YANG Y, SUN C J, BROWN D E, et al. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts [J]. Green Chemistry, 2016, 18(12): 3558-3566.
NEMANASHI M, NOH J-H, MEIJBOOM R. Hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by mesoporous supported dendrimer-derived Ru and Pt catalysts: An alternative method for the production of renewable biofuels [J]. Applied Catalysis A: General, 2018, 550: 77-89.
LV J K, RONG Z M, SUN L M, et al. Catalytic conversion of biomass-derived levulinic acid into alcohols over nanoporous Ru catalyst [J]. Catalysis Science & Technology, 2018, 8(4): 975-979.
MOLLETI J, TIWARI M S, YADAV G D. Novel synthesis of Ru/OMS catalyst by solvent-free method: Selective hydrogenation of levulinic acid to γ-valerolactone in aqueous medium and kinetic modelling [J]. Chemical Engineering Journal, 2018, 334: 2488-2499.
ALBANI D, LI Q, VILE G, et al. Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to γ-valerolactone [J]. Green Chemistry, 2017, 19(10): 2361-2370.
MENG Z, LIU Y, YANG G X, et al. Electron-rich ruthenium on nitrogen-doped carbons promoting levulinic acid hydrogenation to γ-valerolactone: Effect of metal-support interaction [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16501-16510.
PAN J P, XU Q H, FANG L, et al. Ru nanoclusters supported on HfO2@CN derived from NH2-UiO-66(Hf) as stable catalysts for the hydrogenation of levulinic acid to γ-valerolactone [J]. Catalysis Communications, 2019, 128: 105710.
LI W L, LI F, CHEN J W, et al. Efficient and sustainable hydrogenation of levulinic acid to γ-valerolactone in aqueous phase over Ru/MCM-49 catalysts [J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17338-17347.
DHANALAXMI K, SINGURU R, MONDAL S, et al. Magnetic nanohybrid decorated porous organic polymer: Synergistic catalyst for high performance levulinic acid hydrogenation [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1033-1045.
YAN K, LAFLEUR T, WU G, et al. Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles [J]. Applied Catalysis A: General, 2013, 468: 52-58.
ZHANG Y, CHEN C, GONG W B, et al. Self-assembled Pd/CeO2 catalysts by a facile redox approach for high-efficiency hydrogenation of levulinic acid into gamma-valerolactone [J]. Catalysis Communications, 2017, 93: 10-14.
FENG J, LI M, ZHONG Y Y, et al. Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability [J]. Microporous and Mesoporous Materials, 2020, 294: 109858.
LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles [J]. Chemical Reviews, 2018, 118(10): 4981-5079.
CAO W X, LIN L, QI H F, et al. In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone [J]. Journal of Catalysis, 2019, 373: 161-172.
LI W, FAN G L, YANG L, et al. Highly efficient vapor-phase hydrogenation of biomass-derived levulinic acid over structured nanowall-like nickel-based catalyst [J]. ChemCatChem, 2016, 8(16): 2724-2733.
KUMAR V V, NARESH G, SUDHAKAR M, et al. Role of Brønsted and Lewis acid sites on Ni/TiO2 catalyst for vapour phase hydrogenation of levulinic acid: Kinetic and mechanistic study [J]. Applied Catalysis A: General, 2015, 505: 217-223.
SHIMIZU K, KANNO S, KON K. Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded carbon catalysts [J]. Green Chemistry, 2014, 16(8): 3899-3903.
SONG S, YAO S, CAO J H, et al. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone [J]. Applied Catalysis B: Environmental, 2017, 217: 115-124.
LIU D W, ZHANG L N, HAN W P, et al. One-step fabrication of Ni-embedded hierarchically-porous carbon microspheres for levulinic acid hydrogenation [J]. Chemical Engineering Journal, 2019, 369: 386-393.
CHEN K, LING J L, WU C D. In Situ generation and stabilization of accessible Cu/Cu2O heterojunctions inside organic frameworks for highly efficient catalysis [J]. Angewandte Chemie International Edition, 2020, 59(5): 1925-1931.
VILLAVERDE M M, GARETTO T F, MARCHI A J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts [J]. Catalysis Communications, 2015, 58: 6-10.
ZHU Y F, ZHU Y L, DING G Q, et al. Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support [J]. Applied Catalysis A: General, 2013, 468: 296-304.
ISHIKAWA S, JONES D R, IQBAL S, et al. Identification of the catalytically active component of Cu-Zr-O catalyst for the hydrogenation of levulinic acid to γ-valerolactone [J]. Green Chemistry, 2017, 19(1): 225-236.
ZHANG B, CHEN Y, LI J W, et al. High efficiency Cu-ZnO hydrogenation catalyst: The tailoring of Cu-ZnO interface sites by molecular layer deposition [J]. ACS Catalysis, 2015, 5(9): 5567-5573.
MAI E F, MACHADO M A, DAVIES T E, et al. Molybdenum carbide nanoparticles within carbon nanotubes as superior catalysts for γ-valerolactone production via levulinic acid hydrogenation [J]. Green Chemistry, 2014, 16(9): 4092-4097.
CHANG J F, FENG L G, LIU C P, et al. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells [J]. Angewandte Chemie International Edition, 2014, 53(1): 122-126.
POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2013, 135(25): 9267-9270.
YU Z Q, MENG F X, WANG Y, et al. Catalytic transfer hydrogenation of levulinic acid to γ-valerolactone over Ni3P-CePO4 Catalysts [J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7416-7425.
WANG H, CHEN C, ZHANG H, et al. An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass‐derived levulinic acid to γ‐valerolactone [J]. Chinese Journal of Catalysis, 2018, 39(10): 1599-1607.
ZHANG L, MAO J B, LI S M, et al. Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching [J]. Applied Catalysis B: Environmental, 2018, 232: 1-10.
LUO W H, SANKAR M, BEALE A M, et al. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone [J]. Nature Communications, 2015, 6: 1-10.
HUANG X, LIU K, VRIJBURG W L, et al. Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts [J]. Applied Catalysis B: Environmental, 2020, 278: 119314.
0
Views
279
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution