1.上海电气集团国控环球工程有限公司,山西 太原 030001
2.山西潞安煤基合成油有限公司,山西 长治 046000
3.太原理工大学 化学工程与技术学院,山西 太原 030024
扫 描 看 全 文
ZHANG Jian, LIAN Fan, CHEN Dongliang, et al. Experimental study on non-catalytic continuous thermal reforming process of coke oven raw gas. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):182-188(2023)
ZHANG Jian, LIAN Fan, CHEN Dongliang, et al. Experimental study on non-catalytic continuous thermal reforming process of coke oven raw gas. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):182-188(2023) DOI: 10.12434/j.issn.2097-2547.20230075.
以西山焦煤为实验原料,采用实验室规模的两段式煤焦化和干馏气连续热重整实验装置,研究了高温条件下的干馏气连续热重整转化行为,重点考察了氧气(O,2,)流量变化对重整后粗煤气中有效组分及其产率的影响;同时对反应条件进行优化,提出了随干馏温度变化的分段进氧方式(温度分别为低于400 °C、400~700 °C、700~900 °C、高于900 °C时,O,2,流量分别为100 mL/min、125 mL/mim、100 mL/min、50 mL/min)。结果表明,分段进氧热重整条件下,实现了重整中O,2,供给的精准控制,避免了有效气(CO + H,2,)的过氧化反应和积炭的生成;在降低重整O,2,消耗的同时,有效气产量从51.24 L增至98.42 L,增加了92%,极大地提升了热重整效率。以500 × 10,4, t规模焦化改造项目为例,应用非催化连续热重整对焦炉荒煤气进行提质,新增效益最高可达1362 × 10,4, CNY/a。
Using Xishan coking coal as the experimental material, a two-stage coal coking and dry distillation gas continuous thermal reforming experimental apparatus at a laboratory scale was employed to investigate the transformation behavior of dry distillation gas under high-temperature conditions. The primary focus was on the impact of varying oxygen (O,2,) flow rates on the composition and yield of effective components in the reformed crude gas. Simultaneously, the reaction conditions were optimized, proposing a staged oxygen feeding mode corresponding to changes in dry distillation temperature (The temperatures are below 400 ℃, between 400 ℃ and 700 ℃, between 700 ℃ and 900 ℃, and above 900 ℃, with O,2, flow rates of 100 mL/min, 125 mL/min, 100 mL/min, and 50 mL/min, respectively). The results demonstrate that under staged oxygen feeding in thermal reforming, precise control of O,2, supply during the reforming process is achieved, preventing the overoxidation reaction of effective gas (CO + H,2,) and carbon deposition. While reducing the consumption of O,2, in thermal reforming, the yield of effective gas increases from 51.24 L to 98.42 L, representing a 92% increase in efficiency. Using a 500 × 10,4, t coke oven modification project as an example, the application of non-catalytic continuous thermal reforming for upgrading coke oven raw gas can yield additional benefits of up to 1362 × 10,4, CNY/a.
焦炉荒煤气非催化连续热重整实验研究工艺验证
coke oven raw gasnon-catalyticcontinuous thermal reformingexperimental researchprocess verification
王明登, 李超, 许为. 焦化碳排放分析及碳减排技术[C]//中国金属学会. 第十三届中国钢铁年会论文集(摘要)—大会特邀报告&分会场特邀报告. 北京: 冶金工业出版社, 2022: 46-47.
郭文元. 天然气非催化部分氧化过程转化炉大型化关键技术研究[D]. 上海: 华东理工大学, 2012.
ZHU Q L, ZHAO X T, DENG Y Q. Advances in the partial oxidation of methane to sythesis gas [J]. J Nat Gas Chem, 2004, (4): 191-203.
WEI W S, ZHANG T, XU J, et al. Numerical study on soot removal in partial oxidation of methane to syngas reactors [J]. J Energy Chem, 2014, 23(1): 119-130.
DPB C, ST C, MRF A. Experimental and numerical analysis of a methanethermal decomposition reactor [J]. Int J Hydrogen Energy, 2017, 42(40): 25166-25184.
王彦博. 干重整用于定制合成气的研究[D]. 北京: 中国石油大学, 2017.
张国杰. 炭材料催化二氧化碳重整甲烷制合成气[D]. 太原: 太原理工大学, 2012.
杨泳涛, 郭金回, 肖华送. 焦炉气制合成气工艺选择[J]. 天然气化工—C1化学与化工, 2014, 39(3): 63-65.
贾爽, 应浩, 徐卫, 等. 生物质炭水蒸气气化制取富氢合成气[J]. 化工进展, 2018, (4): 1402-1407.
丁洁. 焦炉煤气部分氧化制甲醇合成气研究[J]. 当代化工, 2017, 46(5): 808-810+813.
王博林. CH4/CO2/H2O双重整制乙二醇合成气的研究[D]. 北京: 中国石油大学, 2016.
王辅臣, 代正华, 刘海峰, 等. 焦炉气非催化部分氧化与催化部分氧化制合成气工艺比较[J]. 煤化工, 2006, 34(2): 4-9.
代正华, 王辅臣, 刘海峰, 等. 天然气部分氧化炉的数值模拟[J]. 化学工程, 2005, 33(3): 13-16.
ONOZAKI M, WATANABE K, HASHIMOTO T. Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas [J]. Fuel, 2006, 85(2): 143-149.
成海柱, 张永发. 焦炉煤气非催化部分氧化制合成气实验研究与数值模拟[J]. 现代化工, 2009, 29(S1): 337-339+341.
潘登, 彭锋. “双碳”背景下钢化联产发展路径研究[J]. 煤化工, 2023, 51(1): 1-6+57.
李达, 陈惜明. 焦炉煤气清洁利用研究进展[J]. 广东化工, 2022, 49(11): 94-96+60.
MOGHADAM R A, YUSUP S, WAN A. Investigation on syngas production viabiomass conversion through the integration of pyrolysis and air-steamgasification processes [J]. Energy Convers Manage, 2014, 87(2): 670-675.
AYDIN E S, YUCEL O, SADIKOGLU H. Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification [J]. Int J Hydrogen Energy, 2017, 43(2): 1105-1115.
黄兴, 吕政国, 李珍珍, 等. 甲烷干法重整催化剂抗积碳性能的研究进展[J]. 低碳化学与化工, 2023, 48(2): 14-22.
李晓东. 高稳定CH4-CO2重整催化剂的研究[D]. 太原: 太原理工大学, 2019.
柴娜, 张捷宇, 郑少波. 高温煤气非催化氧化系统热力学分析[J]. 过程工程学报, 2008, 8(S1): 35-40.
刘昊, 吴嵘, 吴素芳. 反应吸附强化焦炉煤气蒸汽重整制氢技术评价[J]. 天然气化工—C1化学与化工, 2018, 43(6): 84-89.
梁杰, 刘淑琴, 余力, 等. 刘庄煤气化反应动力学特征的研究[J]. 中国矿业大学学报, 2000, 29(4): 60-62.
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution