1.常州大学 药学院,江苏 常州 213164
2.常州大学 生物过程工程实验室,江苏 常州 213164
扫 描 看 全 文
王茜,张鸿伟,吕世钧等.二氧化硫低温等离子法改性粉煤灰固体酸催化剂及其催化木糖制糠醛性能[J].低碳化学与化工,2024,49(01):52-59.
WANG Qian,ZHANG Hongwei,LV Shijun,et al.Sulfur dioxide low-temperature plasma modification of fly ash-derived solid acid catalyst and its catalytic performance in xylose to furfural conversion[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):52-59.
王茜,张鸿伟,吕世钧等.二氧化硫低温等离子法改性粉煤灰固体酸催化剂及其催化木糖制糠醛性能[J].低碳化学与化工,2024,49(01):52-59. DOI: 10.12434/j.issn.2097-2547.20230066.
WANG Qian,ZHANG Hongwei,LV Shijun,et al.Sulfur dioxide low-temperature plasma modification of fly ash-derived solid acid catalyst and its catalytic performance in xylose to furfural conversion[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):52-59. DOI: 10.12434/j.issn.2097-2547.20230066.
采用绿色、高效的方法实现活性基团与载体的连接是非均相催化剂构建的关键。通过二氧化硫(SO,2,)低温等离子技术在工业粉煤灰(CFA)表面进行含硫官能团的接枝改性,制备了固体酸催化剂CFA-HSO,3,,并将其用于木糖降解制糠醛。采用傅里叶变换红外光谱仪(FTIR)、全自动比表面积(BET)及孔径分析仪、有机元素分析仪(OEA)、X-射线衍射仪(XRD)和扫描电镜(SEM)等手段对样品进行了表征,并通过优化反应条件提高了催化反应中糠醛的产率。结果表明,SO,2,低温等离子改性后,样品表面成功接枝了含硫官能团,该方法还缩短了催化剂的制备时间。在水和4-甲基-2-戊酮(MIBK)体积比为1:3的双相溶剂体系中,加入0.6 g木糖、0.2 g NH,4,Cl和0.3 g催化剂,于190 °C下反应20 min,糠醛的产率可以达到89.6%,相较于纯水体系提高了47.9%。此外,CFA-HSO,3,还具有良好的催化稳定性和可回收使用性。采用的绿色高效的催化剂改性方式为糠醛的制备提供了一种新路径。
Establishing a connection between active sites and supports using green and efficient methods is crucial for the construction of heterogeneous catalysts. The surface of industrial fly ash (CFA) was sulfurized through a sulfur dioxide (SO,2,) low-temperature plasma modification, resulting in a solid acid catalyst termed CFA-HSO,3,. This catalyst was then utilized for the conversion of xylose to furfural. Characterization of the samples was conducted using various techniques, including Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area and pore size analysis, organic elemental analysis (OEA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The yield of furfural in the catalytic reaction was enhanced by optimizing reaction conditions. The results indicate that the successful grafting of sulfur-containing functional groups onto the sample’s surface after SO,2, low-temperature plasma modification. This approach can also reduce the catalyst’s preparation time. In a biphasic solvent system with a water-to-4-methyl-2-pentanone (MIBK) volume ratio of 1:3, adding 0.6 g of xylose, 0.2 g of NH,4,Cl, and 0.3 g of catalyst, and reacting at 190 °C for 20 minutes, the yield of furfural can reach 89.6%, which is 47.9% higher than that of pure water system. Furthermore, CFA-HSO,3, exhibites excellent catalytic stability and reusability. This study introduces a green and efficient catalyst modification approach, offering a novel pathway for the preparation of furfural.
SO2低温等离子技术粉煤灰固体酸催化剂双相溶剂体系木糖糠醛
SO2 low-temperature plasma technologyfly ashsolid acid catalystbiphasic solvent systemxylosefurfural
王阳. 生物质能源研究主题国际态势分析[J]. 高科技与产业化, 2022, 28(6): 53-59.
WANG Y. International situation analysis of biomass energy research topics [J]. High-Technology & Commercialization, 2022, 28(6): 53-59.
邱海芳, 周新军, 刘培军. 糠醛的制备及其应用研究[J]. 煤炭与化工, 2022, 45(7): 136-140+144.
QIU H F, ZHOU X J, LIU P J. Preparation and application of furfural [J]. Coal and Chemical Industry, 2022, 45(7): 136-140+144.
BORDET A, EL SAYED S, SANGER M, et al. Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support [J]. Nature Chemistry, 2021, 13(9): 916-922.
李嘉梁, 段克立, 杨嘉轩, 等. 杂多酸催化果糖脱水合成5-羟甲基糠醛的研究[J]. 现代化工, 2021, 41(S1): 269-273.
LI J L, DUAN K L, YANG J X, et al. Synthesis of 5-hydroxymethyl furfural from dehydration of fructose catalyzed by heteropoly acid [J]. Modern Chemical Industry, 2021, 41(S1): 269-273.
BRUCE S M, ZONG Z, CHATZIDIMITRIOU A, et al. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent [J]. Journal of Molecular Catalysis A: Chemical, 2016, 422: 18-22.
METKAR P S, TILL E J, CORBIN D R, et al. Reactive distillation process for the production of furfural using solid acid catalysts [J]. Green Chemistry, 2015, 17(3): 1453-1466.
KAIPROMMARAT S, KONGPARAKUL S, REUBROYCHAROEN P, et al. Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent [J]. Fuel, 2016, 174: 189-196.
张倩. H1Cs1Sn0.25PW/g-C3N4催化剂的合成及其催化糠醛氧化的研究[D]. 大连: 大连理工大学, 2021.
ZHANG Q. Synthesis and catalytic performance on furfural oxidation of H1Cs1Sn0.25PW/g-C3N4 [D]. Dalian: Dalian University of Technology, 2021.
陆佳, 刘伟, 王欣, 等. 碳基固体酸催化剂催化纤维素水解研究进展[J]. 化学工程师, 2018, 32(2): 51-56.
LU J, LIU W, WANG X, et al. Research progress in hydrolysis of cellulose catalyzed by carbon based solid acid catalyst [J]. Chemical Engineer, 2018, 32(2): 51-56.
李琴, 杨岳斌, 刘君, 等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理, 2022, (1): 29-34.
LI Q, YANG Y B, LIU J, et al. Present status and prospect of fly ash utilization in China [J]. Energy Research and Management, 2022, (1): 29-34.
周涛, 谢雷. 粉煤灰在混凝土中应用的现状及展望[J]. 江西建材, 2022, (3): 9-11.
ZHOU T, XIE L. Present situation and prospect of application of fly ash in concrete [J]. Jiangxi Building Materials, 2022, (3): 9-11.
黄绪泉, 侯浩波, 朱熙, 等. 矿渣-粉煤灰-氟石膏胶结材激发及毒性[J]. 土木建筑与环境工程, 2011, 33(5): 150-156.
HUANG X Q, HOU H B, ZHU X, et al. Activation and toxicity of slag-fly ash-fluorgypsum cementitious material [J]. Journal of Civil,Architectural & Environmental Engineering, 2011, 33(5): 150-156.
张涛, 邵淑文, 蔡漪. 粉煤灰漂珠载体在光催化材料应用中的研究进展[J]. 应用化工, 2016, 45(9): 1781-1784.
ZHANG T, SHAO S W, CAI Y. Progress in the photocatalytic based on fly ash cenospheres [J]. Applied Chemical Industry, 2016, 45(9): 1781-1784.
李晨阳. 改性粉煤灰催化剂的制备及微波辅助Fenton深度处理焦化废水的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
LI C Y. Study on preparation of modified coal fly ash catalyst for advanced treatment of coking wastewater under assistance of microwave [D]. Harbin: Harbin Institute of Technology, 2021.
胡真, 王晨亮, 李沛伦, 等. 改性粉煤灰的表征及催化Fenton反应性能研究[J]. 材料研究与应用, 2017, 11(4): 245-250.
HU Z, WANG C L, LI P L, et al. Characterization of modified fly ash and its catalytic performance of Fenton reaction [J]. Materials Research and Application, 2017, 11(4): 245-250.
屈湃, 高翔, 王倩, 等. 碱水热处理粉煤灰及其吸附性能探究[J]. 山西化工, 2021, 41(6): 1-2+9.
QU P, GAO X, WANG Q, et al. Study on alkali hydrothermal treatment of fly ash and its adsorption properties [J]. Shanxi Chemical Industry, 2021, 41(6): 1-2+9.
路文娟, 肖先举, 郑中兰, 等. 粉煤灰负载固体酸催化合成柠檬酸三丁酯的研究[J]. 化工技术与开发, 2019, 48(8): 14-16.
LU W J, XIAO X J, ZHENG Z L, et al. Catalytic synthesis of tributyl citrate with fly ash supported solid acid [J]. Technology & Development of Chemical Industry, 2019, 48(8): 14-16.
ZENG D L, LIU S L, GONG W J, et al. A Brønsted solid acid synthesized from fly ash for vapor phase dehydration of methanol [J]. Fuel, 2014, 119: 202-206.
马凌云. 基于粉煤灰活化技术Ash-Diatomite-PAM复合胶体的制备和防灭火机制研究[D]. 太原: 太原理工大学, 2022.
MA L Y. Preparation of Ash-Diatomite-PAM composite colloid based on activation technology and research on fire-extinguishing mechanism [D]. Taiyuan: Taiyuan University of Technology, 2022.
AFTAB Z E H, ASLAM W, AFTAB A, et al. Incorporation of engineered nanoparticles of biochar and fly ash against bacterial leaf spot of pepper [J]. Scientific Reports, 2022, 12(1): 8561.
RAMANATHAN S, GOPINATH S C, ARSHAD M M, et al. Aluminosilicate nanocomposite on genosensor: A prospective voltammetry platform for epidermal growth factor receptor mutant analysis in non-small cell lung cancer [J]. Scientific Reports, 2019, 9(1): 17013.
WANG Y Y, XIE C, ZHANG Z Y, et al. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction [J]. Advanced Functional Materials, 2018, 28(4): 1703363.
沙响玲. 等离子体改性粉煤灰催化剂及其脱硝性能研究[D]. 西安: 西安科技大学, 2017.
SHA X L. Study on modified fly-ash catalyst by plasma for denitration performance [D]. Xi’an: Xi’an University of Science and Technology, 2017.
YANG S H, SUN J L, RAMIREZ-CUESTA A J, et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host [J]. Nature Chemistry, 2012, 4(11): 887-894.
林琦璇. 木糖转化为糠醛过程中溶剂效应和反应机理的研究[D]. 广州: 华南理工大学, 2020.
LIN Q X. Solvent effect and reaction mechanism in the conversion of xylose to furfural [D]. Guangzhou: South China University of Technology, 2020.
任玉荣, 刘宇权, 艾亚男, 等. 催化剂的新定义——催化剂用量对催化剂活性影响的研究[J]. 吉林师范大学学报(自然科学版), 2009, 30(3): 93-96.
REN Y R, LIU Y Q, AI Y A, et al. The new definition of catalyst—Study on the effect of catalyst amount on its catalytic activity [J]. Journal of Jilin Normal University (Natural Science Edition), 2009, 30(3): 93-96.
隋光辉. 糠醛洁净生产工艺及生物质综合利用研究[D]. 吉林: 吉林大学, 2019.
SUI G H. Study on clean production process of furfural and comprehensive utilization of biomass [D]. Jilin: Jilin University, 2019.
GONG L, XU Z Y, DONG J J, et al. Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate [J]. Bioresource Technology, 2019, 293: 122065.
LI J J, CUI J, ZHAO N Q, et al. The properties of granular activated carbons prepared from fly ash using different methods [J]. Carbon, 2006, 7(44): 1346-1348.
王琼, 王闻, 亓伟, 等. 木质纤维素酸催化制备糠醛的工艺及机理研究进展[J]. 农业工程学报, 2017, 33(15): 272-282.
WANG Q, WANG W, QI W, et al. Progress on technologies and mechanism of furfural production from lignocellulose catalyzed by acids [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 272-282.
王振欣, 梁小平, 王月然, 等. 低温等离子体改性效果时效性的研究进展[J]. 纺织学报, 2011, 32(2): 149-154.
WANG Z X, LIANG X P, WANG Y R, et al. Research progress in ageing effect of surface modification by low temperature plasma [J]. Journal of Textile Research, 2011, 32(2): 149-154.
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution