1.陕西延长石油(集团)有限责任公司大连化物所西安洁净能源(化工)研究院,陕西 西安 710075
扫 描 看 全 文
GUO Shujing, CHEN Youtao, LIU Xing, et al. Research progress in green synthesis of acetic acid from syngas. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):22-28(2023)
GUO Shujing, CHEN Youtao, LIU Xing, et al. Research progress in green synthesis of acetic acid from syngas. [J]. Low-carbon Chemistry and Chemical Engineering 48(5):22-28(2023) DOI: 10.12434/j.issn.2097-2547.20220362.
相比于传统甲醇液相羰基化路线,合成气绿色合成乙酸具有环境友好、成本低等优势,具有广阔的发展前景。综述了合成气绿色合成乙酸路线和催化剂研究进展,阐述了催化剂设计优化策略,重点讨论了分子筛酸性和扩散性等性质对反应性能的影响规律。然后归纳了体系中H,2,O含量、原料气,n,(H,2,)/,n,(CO)、活性组分接触距离、反应温度和反应压力等关键条件对反应性能的影响规律。总结认为,合成气绿色合成乙酸的关键过程为丝光沸石(MOR)分子筛催化甲醇羰基化制乙酸,调控增加MOR八元环酸性位数量和减小MOR颗粒尺寸以提高乙酸时空收率和催化剂稳定性是该过程研究的重点。本研究可为开发选择性高、应用条件温和和催化剂廉价易得的合成气绿色合成乙酸工艺提供一定参考。
Compared with the traditional methanol carbonylation to acetic acid in liquid phase, the green synthesis of acetic acid from syngas has the advantages of environmental friendeness and low cost, which have broad development prospects. The routes and catalysts research progress in green synthesis of acetic acid from syngas were reviewed. The design and optimization strategies of catalysts were expounded, and the influences of the properties of molecular sieve such as acidity and diffusibility on the reaction performance were discussed. Then, the influences of key conditions such as H,2,O content,n,(H,2,)/,n,(CO) of feed gas, contact distance of active components, reaction temperature, and reaction pressure on reaction performance in the system were summarized. It is concluded that the key process for the green synthesis of acetic acid from syngas is the methanol carbonylation to acetic acid catalyzed by mordenite (MOR) molecular sieve. Increasing the number of acidic sites of MOR eight-membered ring and reducing the particle size of MOR to improve the spatiotemporal yield of acetic acid and the stability of catalyst are the key points of this process. This study provides some reference for the development of green synthesis of acetic acid from syngas with high selectivity, mild application conditions and cheap and easy available catalysts.
合成气乙酸甲醇绿色合成羰基化
syngasacetic acidmethanolgreen synthesiscarbonylation
HAYNES A. Catalytic methanol carbonylation [M]// Advances in catalysis. Academic Press, 2010, 53: 1-45.
DIMIAN A C, KISS A A. Novel energy efficient process for acetic acid production by methanol carbonylation [J]. Chem Eng Res Des, 2020, 159: 1-12.
KALCK P, LE BERRE C, SERP P. Recent advances in the methanol carbonylation reaction into acetic acid [J]. Coord Chem Rev, 2020, 402: 213078.
REN Z, LYU Y, SONG X G, et al. Review of heterogeneous methanol carbonylation to acetyl species [J]. Appl Catal A, 2020, 595: 117488.
MARTIN-ESPEJO J L, GANDARA-LOE J, ODRIOZOLA J A, et al. Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy [J]. Sci Total Environ, 2022, 840: 156663.
BUDIMAN A W, NAM J S, PARK J H, et al. Review of acetic acid synthesis from various feedstocks through different catalytic processes [J]. Catal Surv Asia, 2016, 20(3): 173-193.
CHEUNG P, BHAN A, SUNLEY G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites [J]. Angew Chem Int Ed, 2006, 45(10): 1617-1620.
BORONAT M, MARTÍNEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite [J]. Phys Chem Chem Phys, 2011, 13(7): 2603-2612.
费振义, 陈国文. 托普索法乙酸生产新工艺[J]. 化学反应工程与工艺, 1997, (2): 73-78.
YONEDA N, KUSANO S, YASUI M, et al. Recent advances in processes and catalysts for the production of acetic acid [J]. Appl Catal A, 2001, 221(1): 253-265.
EZHOVA N N, KOLESNICHENKO N V, MAXIMOV A L. Modern methods for producing acetic acid from methane: New trends (A review) [J]. Petrol Chem, 2022, 62(1): 40-61.
ZHAN E S, XIONG Z P, SHEN W J. Dimethyl ether carbonylation over zeolites [J]. J Energy Chem, 2019, 36: 51-63.
BOZZANO G, MANENTI F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies [J]. Prog Energy Combust Sci, 2016, 56: 71-105.
FUJIMOTO K, SHIKADA T, OMATA K, et al. Vapor phase carbonylation of methanol with soild acid catalysis [J]. Chem Lett, 1984, 13(12): 2047-2050.
BLASCO T, BORONAT M, CONCEPCION P, et al. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center [J]. Angew Chem Int Ed, 2007, 46(21): 3938-3941.
CHEUNG P, BHAN A, SUNLEY G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites [J]. J Catal, 2007, 245(1): 110-123.
BHAN A, ALLIAN A D, SUNLEY G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls [J]. J Am Chem Soc, 2007, 129(16): 4919-4924.
ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities [J]. Adv Mater, 2020, 32(44): e2002927.
LIU J L, XUE H F, HUANG X M, et al. Stability enhancement of H-Mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine [J]. Chin J Catal, 2010, 31(7): 729-738.
O'DONOVAN A W, O'CONNOR C T, KOCH K R. Effect of acid and steam treatment of Na- and H-mordenite on their structural, acidic and catalytic properties [J]. Microporous Mater, 1995, 5(4): 185-202.
BORONAT M, CORMA A. Factors controlling the acidity of zeolites [J]. Catal Lett, 2015, 145(1): 162-172.
NI Y M, SHI L, LIU H C, et al. A green route for methanol carbonylation [J]. Catal Sci Technol, 2017, 7(20): 4818-4822.
ZHANG F Y, CHEN K, JIANG Q M, et al. Selective transformation of methanol to ethanol in the presence of syngas over composite catalysts [J]. ACS Catal, 2022, 12(14): 8451-8461.
FANG X D, WEN F L, DING X N, et al. Highly selective carbonylation of CH3Cl to acetic acid catalyzed by pyridine-treated MOR zeolite [J]. Angew Chem Int Ed, 2022, 61(31): e202203859.
XU F, LV J, CHEN C, et al. Effect of steam treatment on the properties of mordenite and its catalytic performance in a DME carbonylation reaction [J]. Ind Eng Chem Res, 2022, 61(3): 1258-1266.
CHENG Z Z, HUANG S Y, LI Y, et al. Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts: Comparative investigation of deactivation behavior [J]. Appl Catal A, 2019, 576: 1-10.
WANG X S, LI R J, YU C C, et al. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite [J]. Microporous Mesoporous Mater, 2019, 274: 227-235.
LU J X, WANG Y Q, SUN C, et al. Novel synthesis and catalytic performance of hierarchical MOR [J]. New J Chem, 2021, 45(19): 8629-8638.
LIU S P, CHENG Z Z, LI Y, et al. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer [J]. Ind Eng Chem Res, 2020, 59(31): 13861-13869.
XUE H F, HUANG X M, DITZEL E, et al. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate [J]. Chin J Catal, 2013, 34(8): 1496-1503.
FENG X B, HE Z M, ZHANG L Y, et al. Facile designing a nanosheet HMOR zeolite for enhancing the efficiency of ethanol synthesis from dimethyl ether and syngas [J]. Int J Hydrogen Energy, 2022, 47(15): 9273-9282.
BORONAT M, MARTÍNEZ-SÁNCHEZ C, LAW D, et al. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO [J]. J Am Chem Soc, 2008, 130(48): 16316-16323.
LIU S, LIU H, MA X, et al. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange [J]. Catal Sci Technol, 2020, 10(14): 4663-4672.
RU B, LI X B, ZHU L J, et al. Gas-phase methanol carbonylation for dimethyl ether and acetic acid co-production [J]. Adv Mater Res, 2012, 554/556: 760-763.
CHEN W M. DING Y J, JIANG D H,et al. A selective synthesis of acetic acid from syngas over a novel Rh nanoparticles/nanosized SiO2 catalysts [J]. Catal Commun, 2006, 7(8): 559-562.
郭淑静, 王军峰, 张伟, 等. 合成气直接转化制C2+含氧化合物中接力催化路径设计的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 41-47.
周伟, 成康, 张庆红, 等. 合成气转化中的接力催化[J]. 科学通报, 2021, 66(10): 1157-1169.
LIU G B, YANG G H, PENG, X B, et al. Recent advances in the routes and catalysts for ethanol synthesis from syngas [J]. Chem Soc Rev, 2022, 51(13): 5606-5659.
ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels [J]. Chem Soc Rev, 2019, 48(12): 3193-3228.
KANG J C, HE S, ZHOU W, et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis [J]. Nat Commun, 2020, 11(1): 827.
UPHAM D C, ORAZOV M, JARAMILLO T F. Phosphate-passivated mordenite for tandem-catalytic conversion of syngas to ethanol or acetic acid [J]. J Catal, 2021, 399: 132-141.
LI Y B, WANG M H, LIU S H, et al. Distance for communication between metal and acid sites for syngas conversion [J]. ACS Catal, 2022, 12(15): 8793-8801.
XIAO J D, CHENG K, XIE X B, et al. Tandem catalysis with double-shelled hollow spheres [J]. Nat Mater, 2022, 21(5): 572-579.
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution