
浏览全部资源
扫码关注微信
1.四川大学 化学工程学院,四川 成都 610207
2.西南化工研究设计院有限公司 多孔材料与分离转化全国重点实验室,四川 成都 610207
高嘉诚(2000—),硕士研究生,研究方向为化学工程,E-mail:335782213@qq.com。
欧阳李科(1987—),博士,副教授,研究方向为绿色化工、能源与环境催化反应工程,E-mail:Like.ouyang@scu.edu.cn。
收稿日期:2025-04-17,
修回日期:2025-05-10,
网络出版日期:2025-07-14,
移动端阅览
高嘉诚,杨磊,苏敏等.过渡金属氧化物材料催化聚对苯二甲酸乙二醇酯甲醇解回收性能研究[J].低碳化学与化工,
GAO Jiacheng,YANG Lei,SU Min,et al.Study on recycling performances of polyethylene terephthalate methanolysis catalyzed by transition metal oxide materials[J].Low-Carbon Chemistry and Chemical Engineering,
高嘉诚,杨磊,苏敏等.过渡金属氧化物材料催化聚对苯二甲酸乙二醇酯甲醇解回收性能研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250186.
GAO Jiacheng,YANG Lei,SU Min,et al.Study on recycling performances of polyethylene terephthalate methanolysis catalyzed by transition metal oxide materials[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250186.
聚对苯二甲酸乙二醇酯(PET)塑料大规模废弃引发的环境污染与资源浪费问题亟待解决,PET甲醇解技术因其低成本、高效闭环回收特性成为重要突破口。针对目前PET甲醇解催化剂存在的分离困难、稳定性不足及成本高昂等问题,聚焦结构简单稳定、成本低和易于回收的过渡金属氧化物(ZnO、MnO等)材料,进行了催化剂筛选、反应条件优化、循环稳定测试、构效关系和催化反应机制分析等研究。结果表明,在温度为180 ℃、ZnO用量(相对PET的质量分数)为10.0%、甲醇投料比为40 mL/g和反应时间为2 h的最优条件下,针对商业PET颗粒和消费后PET瓶片,PET解聚率均为100%,对苯二甲酸二甲酯产率分别为89.1%和91.0%。在10次循环反应中,ZnO可保持结构及催化性能稳定。在催化过程中,ZnO具有双活性位点(Zn
2+
位点+缺陷氧位点)协同催化机制,ZnO良好的催化性能和稳定性与其丰富的双活性位点和本征稳定性有关。
The problem of environmental pollution and resource waste caused by large-scale waste of polyethylene terephthalate (PET) plastics needs to be solved urgently. PET methanolysis technology has emerged as a crucial breakthrough due to its low cost and efficient closed-loop recovery characteristics. In view of the current problems such as difficult separation
insufficient stability and high cost of PET methanolysis catalysts
focusing on transition metal oxide (such as ZnO
MnO) materials with simple and stable structure
low cost and easy recovery
studies such as catalyst screening
reaction condition optimization
cycle stability testing
structure-activity relationship and catalytic reaction mechanism analysis were carried out. The results show that under the optimal conditions of temperature of 180 ℃
ZnO dosage (relative to PET mass fraction) of 10.0%
methanol feed ratio of 40 mL/g and reaction time of 2 h
for commercial PET particles and post-consumer PET bottle flakes
the PET depolymeriz
ation rates both are 100% and the dimethyl terephthalate yields are 89.1% and 91.0%
respectively. ZnO can maintain stable structure and catalytic performance throughout 10 cycling reactions. The catalytic process involves a synergistic mechanism utilizing dual active sites (Zn
2+
sites + oxygen vacancy sites) on ZnO. The good catalytic performance and stability of ZnO are attributed to its abundance of dual active sites and intrinsic stability.
MURINGAYIL J T , AZAT S , AHMADI Z , et al . Polyethylene terephthalate (PET) recycling: A review [J ] . Case Studies in Chemical and Environmental Engineering , 2024 , 9 : 100673 .
BABAEI M , JALILIAN M , SHAHBAZ K . Chemical recycling of polyethylene terephthalate: A mini-review [J ] . Journal of Environmental Chemical Engineering , 2024 , 12 ( 3 ): 112507 .
刘丽丽 . 废旧聚对苯二甲酸乙二醇酯塑料的化学法降解回收 [J ] . 再生资源与循环经济 , 2024 , 17 ( 11 ): 37 - 39 .
LIU L L . Chemical degradation and recycling of waste polyethylene terephthalate plastics [J ] . Renewable Resources and Circular Economy , 2024 , 17 ( 11 ): 37 - 39 .
KANG M J , YU H J , JEGAL J , et al . Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst [J ] . Chemical Engineering Journal , 2020 , 398 : 125655 .
SARHANGI M , SHIRIN-ABADI A R , ENAYATI M . Synergistic effect of diatomaceous earth as a catalyst and terephthalic acid as a co-catalyst on chemical recycling of polyethylene terephthalate via hydrolysis [J ] . Polymer , 2024 , 313 : 127719 .
YE B Y , ZHOU R R , ZHONG Z X , et al . Upcycling of waste polyethylene terephthalate to dimethyl terephthalate over solid acids under mild conditions [J ] . Green Chemistry , 2023 , 25 ( 18 ): 7243 - 7252 .
ZHANG Y T , GAO J , JIANG C , et al . Copper-supported catalysts for sustainable PET depolymerization: A cost-effective approach towards dimethyl terephthalate (DMT) production [J ] . Green Chemistry , 2024 , 26 ( 11 ): 6748 - 6759 .
FANG P T , XIA S Q , LU X M . Rapid alcoholysis of PET enhanced by its swelling under high temperature [J ] . Journal of Environmental Chemical Engineering , 2022 , 10 ( 3 ): 107823 .
LALHMANGAIHZUALA S , LALDINPUII Z T , KHIANGTE V , et al . Orange peel ash coated Fe 3 O 4 nanoparticles as a magnetically retrievable catalyst for glycolysis and methanolysis of PET waste [J ] . Advanced Powder Technology , 2023 , 34 ( 7 ): 104076 .
LIANG J H , FU J X , LIN H W , et al . Valorization of polyethylene terephthalate wastes to terephthalamide via catalyst-free ammonolysis [J ] . Journal of Industrial and Engineering Chemistry , 2024 , 132 : 578 - 587 .
HU Y , ZHANG S Y , XU J F , et al . Highly efficient depolymerization of waste polyesters enabled by transesterification/hydrogenation relay under mild conditions [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 45 ): e202312564 .
UMDAGAS L , OROZCO R , HEELEY K , et al . Advances in chemical recycling of polyethylene terephthalate (PET) via hydrolysis: A comprehensive review [J ] . Polymer Degradation and Stability , 2025 , 234 : 111246 .
PARIDA D , AERTS A , VANBROEKHOVEN K , et al . Monomer recycling of polyethylene terephthalate, polycarbonate and polyethers: Scalable processes to achieve high carbon circularity [J ] . Progress in Polymer Science , 2024 , 149 : 101783 .
MITTAL N , SONI R K , TEOTIA M . Innovative approaches to chemical recycling of polyethylene terephthalate waste: Investigating key components and their emerging applications [J ] . Journal of Environmental Management , 2025 , 373 : 123595 .
HOFMANN M , SUNDERMEIER J , ALBERTI C , et al . Zinc (II) acetate catalyzed depolymerization of poly(ethylene terephthalate) [J ] . ChemistrySelect , 2020 , 5 ( 32 ): 10010 - 10014 .
TOLLINI F , BRIVIO L , INNOCENTI P , et al . Influence of the catalytic system on the methanolysis of polyethylene terephthalate at mild conditions: A systematic investigation [J ] . Chemical Engineering Science , 2022 , 260 : 117875 .
DAI C N , LIU Y M , WANG Z P , et al . Efficient glycolysis of waste polyethylene terephthalate textiles over Zn-MCM-41 catalysts [J ] . Catalysis Today , 2024 , 440 : 114827 .
NEVES V L B , DE ARAÚJO L G S , SANTIAGO-AGUIAR R S . Chemical recycling of polyethylene terephthalate (PET) driven by the use of protic ionic liquids: A strategy to mitigate microplastic pollution [J ] . Industrial & Engineering Chemistry Research , 2025 , 64 ( 15 ): 7712 - 7722 .
陈瑜 , 邹祎祯 , 谢咏明 , 等 . 乙酰胺-氯化锌低共熔溶剂催化降解PET [J ] . 塑料科技 , 2025 , 53 ( 2 ): 14 - 19 .
CHEN Y , ZOU Y Z , XIE Y M , et al . acetamide-zinc chloride deep eutectic solvent catalytic degradation of PET [J ] . Plastic Science and Technology , 2025 , 53 ( 2 ): 14 - 19 .
DE PAULA V , PANDEIRADA S V , RIBEIRO-CLARO P J A , et al . Closing the loop: Greener and efficient hydrolytic depolymerization for the recycling of polyesters using biobased eutectic solvents [J ] . ACS Sustainable Chemistry & Engineering , 2025 , 13 ( 9 ): 3577 - 3587 .
VEREGUE F R , PEREIRA DA SILVA C T , MOISÉS M P , et al . Ultrasmall cobalt nanoparticles as a catalyst for PET glycolysis: A green protocol for pure hydroxyethyl terephthalate precipitation without water [J ] . ACS Sustainable Chemistry & Engineering , 2018 , 6 ( 9 ): 12017 - 12024 .
CHEN S Q , HU Y H . Chemical recycling of plastic wastes with alkaline earth metal oxides: A review [J ] . Science of The Total Environment , 2023 , 905 : 167251 .
YANG R-X , BIEH Y-T , CHEN C H , et al . Heterogeneous metal azolate framework-6 (MAF-6) catalysts with hgh zinc density for enhanced polyethylene terephthalate (PET) conversion [J ] . ACS Sustainable Chemistry & Engineering , 2021 , 9 ( 19 ): 6541 - 6550 .
WANG J W , CHEN Y M , LI L , et al . Glycolysis of decolored waste polyethylene terephthalate fabrics catalyzed by zinc oxide nanocrystals [J ] . Iranian Polymer Journal , 2024 , 303 : 112576 .
YUN L X , WU H , SHEN Z G , et al . Ultrasmall CeO 2 nanoparticles with rich oxygen defects as novel catalysts for efficient glycolysis of polyethylene terephthalate [J ] . ACS Sustainable Chemistry & Engineering , 2022 , 10 ( 16 ): 5278 - 5287 .
JO Y , KIM E J , KIM J , et al . Efficient Fe 3 O 4 nanoparticle catalysts for depolymerization of polyethylene terephthalate [J ] . Green Chemistry , 2023 , 25 ( 20 ): 8160 - 8171 .
ANGGO K P , CHIAO Y W , LIAO W H , et al . Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe 2 O 4 (M = Co, Ni, Cu and Zn) spinel [J ] . Chemical Engineering Journal , 2022 , 450 : 137926 .
FANG P T , LU X M , ZHOU Q , et al . Controlled alcoholysis of PET to obtain oligomers for the preparation of PET-PLA copolymer [J ] . Chemical Engineering Journal , 2023 , 451 : 138988 .
DU J T , SUN Q , ZENG X F , et al . ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate [J ] . Chemical Engineering Science , 2020 , 220 : 115642 .
AO Z F , DENG J X , HE W X , et al . Low-temperature one-step synthesis of surfactant-free ZnO nanoparticles for efficient glycolysis of PET [J ] . Chemical Engineering Journal , 2024 , 494 : 153037 .
TANG S X , LI F , LIU J D , et al . MgO/NaY as modified mesoporous catalyst for methanolysis of polyethylene terephthalate wastes [J ] . Journal of Environmental Chemical Engineering , 2022 , 10 ( 4 ): 107927 .
TANG S X , LI F , LIU J D , et al . Calcined sodium silicate as solid base catalyst for alcoholysis of poly(ethylene terephthalate) [J ] . Journal of Chemical Technology & Biotechnology , 2022 , 97 ( 5 ): 1305 - 1314 .
HELMER R , BORKAR S S , LI A J , et al . Tandem methanolysis and catalytic transfer hydrogenolysis of polyethylene terephthalate to p -xylene over Cu/ZnZrO x Catalysts [J ] . Angewandte Chemie International Edition , 2025 , 64 ( 4 ): e202416384 .
SABDE S , YADAV G D , NARAYAN R . Conversion of waste into wealth in chemical recycling of polymers: Hydrolytic depolymerization of polyethylene terephthalate into terephthalic acid and ethylene glycol using phase transfer catalysis [J ] . Journal of Cleaner Production , 2023 , 420 : 138312 .
CAO J J , LIN Y H , ZHOU T P , et al . Molecular oxygen-assisted in defect-rich ZnO for catalytic depolymerization of polyethylene terephthalate [J ] . iScience , 2023 , 26 ( 8 ): 107492 .
LI Y , LI Y Z , YIN Y D , et al . Facile synthesis of highly efficient ZnO/ZnFe 2 O 4 photocatalyst using earth-abundant sphalerite and its visible light photocatalytic activity [J ] . Applied Catalysis B: Environment and Energy , 2018 , 226 ( 15 ): 324 - 336 .
CHANG H H , GAO F F , MA S C , et al . Unlocking methanol synthesis from CO 2 and H 2 on ZnO/ZrO 2 catalysts: Surface hydroxyl-mediated activation [J ] . ACS Catalysis , 2025 , 15 ( 8 ): 6005 - 6017 .
LIGUORI F , MORENO-MARRODÁN C , OBERHAUSER W , et al . Hydrolytic depolymerisation of polyesters over heterogeneous ZnO catalyst [J ] . RSC Sustainability , 2023 , 1 ( 6 ): 1394 - 1403 .
CAO J J , LIN Y H , JIANG W , et al . Mechanism of the significant acceleration of polyethylene terephthalate glycolysis by defective ultrathin ZnO nanosheets with heteroatom doping [J ] . ACS Sustainable Chemistry & Engineering , 2022 , 10 ( 17 ): 5476 - 5488 .
LIN Y H , YANG D , MENG C Y , et al . Oxygen vacancy promoted generation of monatomic oxygen anion over Ni 2+ -doped MgO for efficient glycolysis of waste PET [J ] . ChemSusChem , 2023 , 16 ( 9 ): e202300154 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533