浏览全部资源
扫码关注微信
1.中国科学院大学,北京 100049
2.中国科学院 成都有机化学研究所,四川 成都 610041
吴鑫华(1998—),硕士研究生,研究方向为碳纳米管制备,E-mail:wuxh0818@outlook.com。
汪镭(1988—),博士,副研究员,研究方向为纳米碳材料,E-mail:wanglei@cioc.ac.cn。
收稿日期:2025-03-17,
修回日期:2025-04-03,
网络出版日期:2025-06-16,
移动端阅览
吴鑫华,霍琴梅,汪镭.Fe-CO-Mo催化裂解甲烷与乙烯制备碳纳米管的研究[J].低碳化学与化工,
WU Xinhua,HUO Qinmei,WANG Lei.Study on preparation of carbon nanotubes via cracking of methane and ethylene catalyzed by Fe-Co-Mo[J].Low-Carbon Chemistry and Chemical Engineering,
吴鑫华,霍琴梅,汪镭.Fe-CO-Mo催化裂解甲烷与乙烯制备碳纳米管的研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250111.
WU Xinhua,HUO Qinmei,WANG Lei.Study on preparation of carbon nanotubes via cracking of methane and ethylene catalyzed by Fe-Co-Mo[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250111.
以甲烷单独作为碳源制备多壁碳纳米管(MWCNTs)时,甲烷转化率和MWCNTs产率均较低,且MWCNTs中还会残留较多的金属催化剂颗粒,同时导电性较差。采用催化化学气相沉积法,以柠檬酸-硝酸盐燃烧法所得Fe-Co-Mo/Al
2
O
3
-MgO作催化剂,甲烷和乙烯作混合碳源,制备了MWCNTs。采用TEM、SEM和N
2
吸/脱附等对所得催化剂及MWCNTs进行了表征,并研究了MWCNTs薄膜的导电性。结果表明,在Fe-Co-Mo/Al
2
O
3
-MgO催化剂(
n
(Fe):
n
(Co):
n
(Mo) = 4:5:1)的Fe-Co-Mo质量分数为40%、温度为740 °C、甲烷流量为60 mL/min和乙烯流量为20 mL/min的条件下进行催化裂解反应,碳产率为2553%,MWCNTs的比表面积为206 m
2
/g,平均直径为12.54 nm,并具有良好的结晶性。在环境温度为20 °C、空气湿度为60%的条件下,质量分数为25%的MWCNTs薄膜的表面电阻为1.8 × 10
3
Ω/sq(选定面积内薄膜的电阻为1.8 × 10
3
Ω),明显优于商用对照组(2.5 × 10
3
Ω/sq)。
When methane is used as the carbon source alone to prepare multi-walled carbon nanotubes (MWCNTs)
the methane conversion rate and the MWCNTs yield are low
and there will be a high content of metal catalyst particles left in MWCNTs
and the conductivity is poor. MWCNTs were prepared by catalytic chemical vapor deposition metho
d using Fe-Co-Mo/Al
2
O
3
-MgO (obtained by citric acid-nitrate combustion method) as catalyst and methane and ethylene as mixed carbon sources. The obtained catalysts and MWCNTs were characterized by TEM
SEM and N
2
adsorption/desorption
etc.
and the conductivities of MWCNTs films were studied. The results show that when the Fe-Co-Mo mass fraction of Fe-Co-Mo/Alal
2
O
3
-MgO catalyst (
n
(Fe):
n
(Co):
n
(Mo) = 4:5:1) is 40%
the temperature is 740 ℃
the methane flow rate is 60 mL/min and the ethylene flow rate is 20 mL/min for the catalytic cracking reaction
the carbon yield is 2553%
the specific surface area of MWCNTs is 206 m
2
/g
the average diameter is 12.54 nm
and it has good crystallinity. When the ambient temperature is 20 °C and the air humidity is 60%
the surface resistance of the MWCNTs film with mass fraction of 25% is 1.8 × 10
3
Ω/sq (the resistance of thin film in selected area is 1.8 × 10
3
Ω)
which is significantly better than the commercial control group (2.5 × 10
3
Ω/sq).
BARNARD J S , PAUKNER C , KOZIOL K K , et al . The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition [J ] . Nanoscale , 2016 , 8 ( 39 ): 17262 - 17270 .
ARORA N , SHARMA N N . Arc discharge synthesis of carbon nanotubes: Comprehensive review [J ] . Diamond and Related Materials , 2014 , 50 : 135 - 150 .
RIBEIRO H , SCHNITZLER M C , DASILVA W M , et al . Purification of carbon nanotubes produced by the electric arc-discharge method [J ] . Surfaces and Interfaces , 2021 , 26 : 101389 .
BANDOW S , RAO A M , WILLIAMS K A , et al . Purification of single-wall carbon nanotubes by microfiltration [J ] . The Journal of Physical Chemistry B , 1997 , 101 ( 44 ): 8839 - 8842 .
SIRIWARDANE R , RILEY J , ATALLAH C , et al . Investigation of methane and ethane pyrolysis with highly active and durable iron-alumina catalyst to produce hydrogen and valuable nano carbons: Continuous fluidized bed tests and reaction rate analysis [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 38 ): 14210 - 14225 .
朴玲钰 , 李永丹 . 催化裂解含碳气体生长碳纳米管展望 [J ] . 天然气化工—C1化学与化工 , 2001 , 26 ( 6 ): 47 - 52 .
PIAO L Y , LI Y D . Prospect in growth of the carbon nanotubes by catalytic decomposition of gaseous hydrocarbons [J ] . Natural Gas Chemical Industry , 2001 , 26 ( 6 ): 47 - 52 .
张新庄 , 王姗姗 , 张磊 , 等 . 甲烷催化裂解法多壁碳纳米管的酸碱液溶灰提纯研究 [J ] . 天然气化工—C1化学与化工 , 2021 , 46 ( 6 ): 52 - 56 .
ZHANG X Z , WANG S S , ZHANG L , et al . Dissolution and purification of ash of multi-walled carbon nanotubes by methane catalytic cracking in acid and alkali solutions [J ] . Natural Gas Chemical Industry , 2021 , 46 ( 6 ): 52 - 56 .
JIANG J J , SHU Y , XU L , et al . Preparation of high-yield multi-walled carbon nanotubes by catalytic decomposition of mixture of natural gas and propylene and their electrothermal properties [J ] . Fullerenes, Nanotubes and Carbon Nanostructures , 2020 , 28 ( 9 ): 745 - 751 .
JEONG H J , KIM K K , JEONG S Y , et al . High-yield catalytic synthesis of thin multiwalled carbon nanotubes [J ] . The Journal of Physical Chemistry B , 2004 , 108 ( 46 ): 17695 - 17698 .
XIANG R , LUO G H , QIAN W Z , et al . Large area growth of aligned cnt arrays on spheres: Towards large scale and continuous production [J ] . Chemical Vapor Deposition , 2007 , 13 ( 10 ): 533 - 536 .
KIM M J , PARK J S , KIM K D , et al . Fabrication of carbon nanotube with high purity and crystallinity by methane decomposition over ceria-supported catalysts [J ] . Journal of Industrial and Engineering Chemistry , 2023 , 119 : 315 - 326 .
王文雨 , 张帅国 , 冯宇 , 等 . 碳纳米管制备技术的研究进展 [J ] . 天然气化工—C1化学与化工 , 2020 , 45 ( 4 ): 123 - 129 .
WANG W Y , ZHANG S G , FENG Y , et al . Research progress of carbon nanotube preparation technology [J ] . Natural Gas Chemical Industry , 2020 , 45 ( 4 ): 123 - 129 .
LEE C J , PARK J , YU J A . Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition [J ] . Chemical Physics Letters , 2002 , 360 ( 3 ): 250 - 255 .
AL-FATESH A S , BARAMA S , IBRAHIM A A , et al . Study of methane decomposition on Fe/MgO-based catalyst modified by Ni, Co, and Mn additives [J ] . Chemical Engineering Communications , 2017 , 204 ( 7 ): 739 - 749 .
SHEN W , HUGGINS F E , SHAH N , et al . Novel Fe-Ni nanoparticle catalyst for the production of CO and CO 2 -free H 2 and carbon nanotubes by dehydrogenation of methane [J ] . Applied Catalysis A: General , 2008 , 351 ( 1 ): 102 - 110 .
AWADALLAH A E , ABOUL-ENEIN A A , EL-DESOUKI D S , et al . Catalytic thermal decomposition of methane to CO x -free hydrogen and carbon nanotubes over MgO supported bimetallic group Ⅷ catalysts [J ] . Applied Surface Science , 2014 , 296 : 100 - 107 .
TANG S , ZHONG Z , XIONG Z , et al . Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts [J ] . Chemical Physics Letters , 2001 , 350 ( 1/2 ): 19 - 26 .
ATEIA E E , MORSY M , AHMED E M , et al . Growth and characterization of carbon nanotubes over CoFe 2 O 4 -MgO catalysts at different temperatures [J ] . Fullerenes, Nanotubes and Carbon Nanostructures , 2020 , 28 ( 10 ): 815 - 822 .
刘恺轩 , 姜沁源 , 汪菲 , 等 . 高密度超长碳纳米管的可控制备: 进展与展望 [J ] . 化工学报 , 2024 , 75 ( 4 ): 1355 - 1369 .
LIU K X , JIANG Q Y , WANG F , et al . Controlled synthesis of high-density ultralong carbon nanotubes: Progress and prospects [J ] . Chinese Journal of Chemical Engineering , 2024 , 75 ( 4 ): 1355 - 1369 .
SANJABI S , OBEYDAVI A . Synthesis and characterization of nanocrystalline MgAl 2 O 4 spinel via modified sol-gel method [J ] . Journal of Alloys and Compounds , 2015 , 645 : 535 - 540 .
姜锦锦 . 高碳产率小直径碳纳米管制备用钴基催化剂的研究 [D ] . 北京 : 中国科学院大学 , 2021 .
JIANG J J . The study of cobalt-based catalysts for preparation of small diameter carbon nantoubes with high carbon yield [D ] . Beijing : University of Chinese Academy of Sciences , 2021 .
PEIGNEY A , LAURENT C , FLAHAUT E , et al . Specific surface area of carbon nanotubes and bundles of carbon nanotubes [J ] . Carbon , 2001 , 39 : 507 - 514 .
GORBUNOV A , JOST O , POMPE W , et al . Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes [J ] . Applied Surface Science , 2002 , 197/198 : 563 - 567 .
PARK Y , HEMBRAM K P S S , YOO R , et al . Reinterpretation of single-wall carbon nanotubes by Raman spectroscopy [J ] . The Journal of Physical Chemistry C , 2019 , 123 ( 22 ): 14003 - 14009 .
CHEN L , NOREÑA L E , WANG J A , et al . Promoting role of amorphous carbon and carbon nanotubes growth modes of methane decomposition in one-pot catalytic approach [J ] . Catalysts , 2021 , 11 ( 10 ): 1217 .
PARK J M , WANG Z J , KWON D J , et al . Electrical properties of transparent CNT and ITO coatings on PET substrate including nano-structural aspects [J ] . Solid-State Electronics , 2013 , 79 : 147 - 151 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构