浏览全部资源
扫码关注微信
中石化石油化工科学研究院有限公司,北京 100083
马子豪(2000—),硕士研究生,研究方向为烯烃水合,E-mail:mazihao.ripp@sinopec.com。
侯朝鹏(1974—),博士,研究员,研究方向为石油化工和煤化工,E-mail:houcp.ripp@sinopec.com。
收稿日期:2025-01-15,
修回日期:2025-03-20,
网络出版日期:2025-05-12,
移动端阅览
马子豪,侯朝鹏,吕帅帅等.氧化铝复合ZSM-5催化剂的制备及其环己烯水合制环己醇反应性能[J].低碳化学与化工,
MA Zihao,HOU Chaopeng,LV Shuaishuai,et al.Preparation of alumina composite ZSM-5 catalysts and their performances in hydration of cyclohexene to cyclohexanol[J].Low-Carbon Chemistry and Chemical Engineering,
马子豪,侯朝鹏,吕帅帅等.氧化铝复合ZSM-5催化剂的制备及其环己烯水合制环己醇反应性能[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250020.
MA Zihao,HOU Chaopeng,LV Shuaishuai,et al.Preparation of alumina composite ZSM-5 catalysts and their performances in hydration of cyclohexene to cyclohexanol[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250020.
苯酚加氢法和环己烷氧化法等传统方法制环己醇存在能耗高、安全性差等问题。而环己烯水合法因环己醇选择性高、氢气消耗量低而受到广泛关注。然而,现有环己烯水合制环己醇催化剂(如ZS
M-5分子筛)在酸量调控过程中存在骨架结构易被破坏、酸性分布不均等问题。采用挤条成型法复合干胶粉(主要成分为拟薄水铝石)与ZSM-5分子筛,制得一系列环己烯水合制环己醇催化剂。通过XRD和N
2
物理吸/脱附等表征了催化剂的结构,并在固定床反应器上评价了催化剂的催化性能。结果表明,在温度为110 ℃、压力为0.1 MPa、N
2
流量为10 mL/min、空速为0.33 h
-1
和
n
(水):
n
(环己烯)为6:1的条件下反应1 h,催化剂Z4-4:1(
m
(ZSM-5):
m
(干胶粉)为4:1)表现出最优的催化性能,其环己烯转化率为8.2%,环己醇选择性为79.0%。在一定范围内增强酸性和增大酸量,均可强化催化剂的催化性能。
Traditional methods for cyclohexanol production
such as phenol hydrogenation method and cyclohexane oxidation method
suffer from high energy consumptions and safety concerns. In contrast
the cyclohexene hydration method has attracted significant attention due to its high cyclohexanol selectivity and low hydrogen consumption. However
existing catalysts (such as ZSM-5 zeolite) for cyclohexene hydration to cyclohexanol face challenges including structural framework instabilities and uneven acid distributions during acid content regulation. A series of catalysts were prepared by compositing ZSM-5 zeolite with dry gel powder (primarily pseudo-boehmite) via extrusion molding. The structures of catalysts were characterized by XRD and N₂ physisorption-desorption
etc.
and their catalytic performances were evaluated in a fixed-bed reactor. The results show that reaction under optimized conditions of temperature of 110 °C
pressure of 0.1 MPa
N₂ flow rate of 10 mL/min
space velocity of 0.33 h
-1
and
n
(water):
n
(cyclohexene) of 6:1 for 1 h
catalyst Z4-4:1 (
m
(ZSM-5):
m
(dry gel powder) of 4:1) exhibits superior catalytic performance with cyclohexene conversion rate of 8.2% and cyclohexanol selectivity of 79.0%. The catalytic performance of catalyst can be enhanced by enhancing acid strength and increasing acid quantity within specific ranges.
刘殿华 , 谷帅龙 . 水合制备环己醇的催化剂的制备方法、催化剂及其应用 : 117960233A [P ] . 2024-05-03 .
LIU D H , GU S L . Preparation method of catalyst for hydration preparation of cyclohexanol, catalyst and application : 117960233A [P ] . 2024-05-03 .
刘云轩 . 酸改性ZSM-5催化环己烯水合制备环己醇研究 [D ] . 湘潭 : 湘潭大学 , 2019 .
LIU Y X . Study on the preparation of cyclohexanol by acid-modified ZSM-5 catalyzed cyclohexene hydration [D ] . Xiangtan : Xiangtan University , 2019 .
汤英 , 赵兵 . 环己烯水合反应的ZSM-5催化剂的稳定性研究 [J ] . 工业催化 , 2016 , 24 ( 5 ): 50 - 54 .
TANG Y , ZHAO B . Study on stability of ZSM-5 catalyst for cyclohexene hydration reaction [J ] . Industrial Catalysis , 2016 , 24 ( 5 ): 50 - 54 .
郭志武 , 靳海波 , 佟泽民 . 环己酮、环己醇制备技术进展 [J ] . 化工进展 , 2006 , 25 ( 8 ): 852 - 859 .
GUO Z W , JIN H B , TONG Z M . Advances in preparation technology of cyclohexanone and cyclohexanol [J ] . Chemical Industry and Engineering Progress , 2006 , 25 ( 8 ): 852 - 859 .
JIN Y Z , ZONG L K , WANG X Y , et al . Catalytic enhancement of cyclohexene hydration by Ga-doped ZSM-5 zeolites [J ] . ACS Omega , 2022 , 7 ( 30 ): 26289 - 26297 .
TIAN H , LIU S , LIU Q . ZSM-5 zeolite modification and catalytic reaction mechanism in the reaction of cyclohexene hydration [J ] . RSC Advances , 2022 , 12 ( 38 ): 24654 - 24669 .
姚旭婷 , 黄鑫 , 林玉霞 , 等 . 失活TS-1高效催化环己烯水合生成环己醇的研究 [J ] . 化学学报 , 2020 , 78 ( 10 ): 1111 - 1119 .
YAO X T , HUANG X , LIN Y X , et al . Study on the efficient catalytic hydration of cyclohexene to cyclohexanol by deactivated TS-1 [J ] . Acta Chimica Sinica , 2020 , 78 ( 10 ): 1111 - 1119 .
OKUHARA T . Water-tolerant solid acid catalysts [J ] . Chemical Reviews , 2002 , 102 ( 10 ): 3641 - 3665 .
STEYER F , FREUND H R , SUNDMACHER K . A novel reactive distillation process for the indirect hydration of cyclohexene to cyclohexanol using a reactive entrainer [J ] . Industrial & Engineering Chemistry Research , 2008 , 47 ( 23 ): 9581 - 9587 .
STEYER F , SUNDMACHER K . Cyclohexanol production via esterification of cyclohexene with formic acid and subsequent hydration of the ester: Reaction kinetics [J ] . Industrial & Engineering Chemistry Research , 2007 , 46 ( 4 ): 1099 - 1104 .
ZHANG H , MAHAJANI S M , SHARMA M M , et al . Hydration of cyclohexene with solid acid catalysts [J ] . Chemical Engineering Science , 2002 , 3 ( 1 ): 57 .
杨付 , 陈光文 , 李恒强 , 等 . 带有微混合器的固定床反应器中的环己烯水合反应 [J ] . 催化学报 , 2006 , 27 ( 6 ): 459 - 461 .
YANG F , CHEN G W , LI H Q , et al . Cyclohexene hydration in a fixed-bed reactor with micro-mixer [J ] . Chinese Journal of Catalysis , 2006 , 27 ( 6 ): 459 - 461 .
PLATZ R , FUCHS W , DUDECK C . Manufacture of cyclohexanol from cyclohexene : US3988379A [P ] . 1976-10-26 .
WALLER F J . Hydration of cyclohexene in presence of perfluorosulfonic acid polymer : US4595786A [P ] . 1986-06-17 .
魏书梅 . 不同硅铝比小晶粒ZSM-5分子筛的合成及催化苯甲醇烷基化反应性能 [J ] . 石油炼制与化工 , 2022 , 53 ( 10 ): 42 - 49 .
WEI S M . Synthesis of small-crystal ZSM-5 molecular sieves with different silica-alumina ratios and their catalytic performance in benzyl alcohol alkylation [J ] . Petroleum Processing and Chemical Industry , 2022 , 53 ( 10 ): 42 - 49 .
吴慧 . ZSM-5分子筛催化环己烯水合反应过程研究 [D ] . 湘潭 : 湘潭大学 , 2016 .
WU H . Study on the process of hydration of cyclohexene by ZSM-5 zeolite [D ] . Xiangtan : Xiangtan University , 2019 .
刘帅 . ZSM-5分子筛改性及其催化环己烯水合反应过程研究 [D ] . 烟台 : 烟台大学 , 2022 .
LIU S . Study on ZSM-5 modification and catalytic cyclohexene of hydration process [D ] . Yantai : Yantai University , 2022 .
孙敏 , 沈宁元 , 黄志青 , 等 . 多级孔ZSM-5分子筛在增产丙烯助剂中的应用 [J ] . 石油炼制与化工 , 2023 , 54 ( 8 ): 58 - 66 .
SUN M , SHEN N Y , HUANG Z Q , et al . Application of hierarchical pore ZSM-5 molecular sieve in propylene yield enhancing agents [J ] . Petroleum Refining and Chemical Industry , 2023 , 54 ( 8 ): 58 - 66 .
曹健 , 郝坤 , 邢梦姣 , 等 . 晶种法直接水热合成含磷ZSM-5分子筛及其芳构化性能研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 6 ): 87 - 94 .
CAO J , HAO K , XING M J , et al . Direct hydrothermal synthesis of phosphorus-containing ZSM-5 molecular sieves via seed method and their aromatization performance [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 6 ): 87 - 94 .
李雪礼 , 侯硕旻 , 段宏昌 , 等 . 磷改性工艺对ZSM-5分子筛催化裂化增产丙烯性能的影响 [J ] . 石油炼制与化工 , 2023 , 54 ( 8 ): 74 - 82 .
LI X L , HOU S M , DUAN H C , et al . Influence of phosphorus modification process on the catalytic cracking performance of ZSM-5 molecular sieve for propylene yield enhancement [J ] . Petroleum Refining and Chemical Industry , 2023 , 54 ( 8 ): 74 - 82 .
CHENG Y , WANG L J , LI J S , et al . Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template [J ] . Materials Letters , 2005 , 59 ( 27 ): 3427 - 3430 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构