浏览全部资源
扫码关注微信
1.昆明理工大学 冶金与能源工程学院,云南 昆明 650500
2.攀枝花学院 生物与化学工程学院,四川 攀枝花 617000
夏韬(1989—),博士研究生,工程师,研究方向为有色行业碳减排,E-mail:18895989859@163.com。
吴丰辉(1994—),博士,讲师,研究方向为固废资源化,E-mail:17824227221@163.com。
收稿日期:2025-01-13,
修回日期:2025-03-03,
网络出版日期:2025-07-15,
移动端阅览
夏韬,吴丰辉,崔庆渊.有色金属冶炼过程中降碳与烟气中CO2分离技术研究现状[J].低碳化学与化工,
XIA Tao,WU Fenghui,CUI Qingyuan.Research status of carbon reduction and flue gas CO2 separation technologies in non-ferrous metal smelting processes[J].Low-Carbon Chemistry and Chemical Engineering,
夏韬,吴丰辉,崔庆渊.有色金属冶炼过程中降碳与烟气中CO2分离技术研究现状[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250015.
XIA Tao,WU Fenghui,CUI Qingyuan.Research status of carbon reduction and flue gas CO2 separation technologies in non-ferrous metal smelting processes[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250015.
针对有色金属冶炼行业日益紧迫的碳减排需求,系统综述了其全流程降碳技术的最新研究进展,包括冶炼前、冶炼中及冶炼末端等关键环节。通过对吸收法、固态吸附法和膜分离法等主流技术的对比研究,揭示了制约CO
2
分离技术工业化应用的关键因素,主要包括分离成本、工艺复杂性和产物纯度等。对此,相关研究创新性地应用液膜耦合技术和变压吸附技术,旨在提升有色金属冶炼烟气中CO
2
的分离效率,这为突破CO
2
资源化利用的技术瓶颈提供了新的解决方案,有望助力“双碳”目标的实现。
In response to the increasingly urgent carbon reduction demand of the non-ferrous metal smelting industry
the latest research progress in carbon reduction technologies across the entire smelting process was reviewed systematically
including key stages such as pre-smelting
during smelting and post-smelting. Through a comparative analysis of mainstream technologies such as absorption
solid adsorption and membrane separation methods
it identifies the key factors restricting the industrial application of CO
2
separation technologies
mainly including separation cost
process complexity and produc
t purity. In this regard
relevant studies have innovatively applied liquid membrane coupling technology and pressure swing adsorption technology
aiming to improve the separation efficiency of CO
2
from non-ferrous metal smelting flue gases. These technologies provide new solutions to overcome the technical bottlenecks of CO
2
resource utilization and are expected to contribute to the realization of the “carbon peaking and carbon neutrality” goals.
夏宾 , 付加锋 , 张淑婷 . 有色金属行业CO 2 排放估算方法研究 [J ] . 资源开发与市场 , 2012 , 28 ( 7 ): 593 - 618 .
XIA B , FU J F , ZHANG S T . Research on CO 2 emission estimation method in nonferrous metal industry [J ] . Resource Development and Market , 2012 , 28 ( 7 ): 593 - 618 .
SHEN A X , ZHANG J H . Technologies for CO 2 emission reduction and low-carbon development in primary aluminum industry in China: A review [J ] . Renewable and Sustainable Energy Reviews , 2024 , 189 : 113965 .
BAILERA M , LISBONA P , PEÑA B , et al . A review on CO 2 mitigation in the iron and steel industry through power to X processes [J ] . Journal of CO 2 Utilization , 2021 , 46 : 101456 .
韩菲子 , 张玉清 , 李嘉欣 . 北京市未来产业之碳捕集封存利用发展及展望研究 [J ] . 中国科技投资 , 2024 , ( 15 ): 51 - 54 .
HAN F Z , ZHANG Y Q , LI J X . Research on the development and prospects of carbon capture, storage and utilization in future industries in beijing [J ] . China Venture Capital , 2024 , ( 15 ): 51 - 54 .
LI K , LIN B Q . How does administrative pricing affect energy consumption and CO 2 emissions in China? [J ] . Renewable and Sustainable Energy Reviews , 2015 , 42 : 952 - 962 .
LIN B , OMOJU O E , OKONKWO J U . Impact of industrialisation on CO 2 emissions in Nigeria [J ] . Renewable and Sustainable Energy Reviews , 2015 , 52 : 1228 - 1239 .
ISMAIL M F H , MASRI A N , RASHID N M , et al . A review of CO 2 capture for amine-based deep eutectic solvents [J ] . Journal of Ionic Liquids , 2024 , 4 ( 2 ): 100114 .
IMRAN S M , HAGHANI H , APAIYAKUL R , et al . Efficient catalytic regeneration of amine-based solvents in CO 2 capture: A comprehensive meta-analysis [J ] . Separation and Purification Technology , 2025 , 359 : 130434 .
LIU P , LIU H M , LI K K , et al . Recent advances in integrating solvent-based CO 2 capture with electrochemical regeneration process: A review [J ] . Fuel , 2025 , 385 : 133943 .
ZHANG R Y , XIE Z W , GE Q F , et al . Recent advancements in integrating CO 2 capture from flue gas and ambient air with thermal catalytic conversion for efficient CO 2 utilization [J ] . Journal of CO 2 Utilization , 2024 , 89 : 102973 .
DAGNAW F W , LI R Q , XIE Y L , et al . Recent advances on carbon capture and electrochemical CO 2 reduction with amphiphile surfactants and polymers [J ] . Journal of Environmental Chemical Engineering , 2025 : 115394 .
HOSSEINI S , MARAHEL E , BAYESTI I , et al . CO 2 adsorption on modified carbon coated monolith: Effect of surface modification by using alkaline solutions [J ] . Applied Surface Science , 2015 , 324 : 569 - 575 .
RIZZETTO A , SARTORETTI E , PIUMETTI M , et al . Novel application of Ru-based catalysts on MgAl oxides alkaline adsorbents for cyclic CO 2 methanation [J ] . Chemical Engineering Journal , 2024 , 501 : 157585 .
BARICUATRO J H , KIM Y G , KORZENIEWSKI C L , et al . Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO 2 -reduction potentials [J ] . Electrochemistry Communications , 2018 , 91 : 1 - 4 .
PASICHNYK M , STANOVSKY P , POLEZHAEV P , et al . Membrane technology for challenging separations: Removal of CO 2 , SO 2 and NO x from flue and waste gases [J ] . Separation and Purification Technology , 2023 , 323 : 124436 .
TAHERIZADEH A , SIMON A , RICHTER H , et al . Exploring the separation properties of high-Si CHA membranes for the CO 2 capturing technology: Impact of the selective layer thickness and growth mechanism [J ] . Journal of Membrane Science , 2024 , 697 : 122565 .
STANISLOWSKI J J , HOLMES M J , SNYDER A C , et al . Advanced CO 2 separation technologies: Coal gasification, warm-gas cleanup, and hydrogen separation membranes [J ] . Energy Procedia , 2013 , 37 : 2316 - 2326 .
CHABNI A , BAÑARES C , VÁZQUEZ L , et al . Combination of expeller and supercritical CO 2 for the extraction of a phenolic-rich olive oil—A preliminary chemical characterization [J ] . Journal of Industrial and Engineering Chemistry , 2025 , 125 : 1254 .
VERSTEEG F G , VERSTEEG F A , PICCHIONI F . Monomer extraction from polymers using supercritical CO 2 [J ] . Journal of CO 2 Utilization , 2024 , 89 : 102963 .
WU F H , LIU X X , QU G F , et al . A critical review on extraction of valuable metals from solid waste [J ] . Separation and Purification Technology , 2022 , 301 : 122043 .
SU Z , LI X , ZHANG Z , et al . Analysis of energy-related carbon dioxide intensity in China's major non-ferrous metal producing regions: Spatio-temporal decomposition and emission reduction strategies [J ] . Energy , 2025 , 314 : 134299 .
IMRAN M , ZAMAN K , NASSANI A A , et al . Does nuclear energy reduce carbon emissions despite using fuels and chemicals? Transition to clean energy and finance for green solutions [J ] . Geoscience Frontiers , 2024 , 15 ( 4 ): 101608 .
GOREN A Y , DINCER I , GOGOI S B , et al . Recent developments on carbon neutrality through carbon dioxide capture and utilization with clean hydrogen for production of alternative fuels for smart cities [J ] . International Journal of Hydrogen Energy , 2024 , 79 : 551 - 578 .
ZHANG C L , LIU C T , LI X R , et al . A novel clean combustion technology for solid fuels to efficiently reduce gaseous and particulate emissions [J ] . Journal of Cleaner Production , 2021 , 320 : 128864 .
AMELKOVICH Y A , MOSTOVSHCHIKOV A V , NAZARENKO O B . Effect of non-uniform magnetic field on combustion products of aluminum nanopowder in mixture with titanium and zirconium dioxides [J ] . Materials Letters , 2023 , 346 : 134550 .
SU K , OUYANG Z , LI S , et al . Exploration on deep pulverized coal activation and ultra-low NO x emission strategies with novel purifying-combustion technology [J ] . Energy , 2024 , 313 : 133814 .
SU K , OUYANG Z , WANG H , et al . Effects of activated fuel and staged secondary air distributions on purification, combustion and NO x emission characteristics of pulverized coal with purification-combustion technology [J ] . Energy , 2024 , 302 : 131883 .
NEMA A , KUMAR A , WARUDKAR V . An in-depth critical review of different carbon capture techniques: Assessing their effectiveness and role in reducing climate change emissions [J ] . Energy Conversion and Management , 2025 , 323 : 119244 .
HUANG H , ZHOU Z , WU W T , et al . XCT images-based modeling for elucidating electrochemical inert phase-dependent multiscale electrode kinetic behaviors [J ] . Energy Storage Materials , 2024 , 73 : 103792 .
XU Y B , TIAN Y , GUO S , et al . Recycling of valuable metals from spent ternary Li-ion batteries for the multi-active site electrocatalysts with high-entropy coordination [J ] . Applied Catalysis B: Environment and Energy , 2025 , 365 : 124976 .
GOLZAR A M , BAHALOO H N , POURHOSSEIN F , et al . Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste [J ] . Biotechnology Advances , 2024 , 77 : 108438 .
ZHANG Y , YANG Y T , GUO D F , et al . Synergistic environmental benefits from copper slag recycling in China: Pollutant mitigation and carbon reduction [J ] . Journal of Environmental Management , 2024 , 370 : 122907 .
陈薪光 . 浅谈海外铜冶炼企业节能减排降碳管理实践与探索 [J ] . 有色矿冶 , 2024 , 40 ( 3 ): 58 - 60 .
CHEN X G . Reduction and carbon reduction management for overseas copper smelting enterprises [J ] . Non-ferrous Mining and Metallurgy , 2024 , 40 ( 3 ): 58 - 60 .
程珩 , 陈立新 . “富氧燃烧+气化炉”在水泥炉窑节能减碳领域的应用 [J ] . 中国建材 , 2022 , ( 2 ): 126 - 129 .
CHENG H , CHEN L X . Application of oxygen-enriched combustion + gasifier in energy saving and carbon reduction of cement kiln [J ] . China Building Materials , 2022 , ( 2 ): 126 - 129
BHUTTO A W , BAZMI A A , ZAHEDI G . Underground coal gasification: From fundamentals to applications [J ] . Progress in Energy and Combustion Science , 2013 , 39 ( 1 ): 189 - 214 .
MUELLER L F , TZIMAS E , KALTSCHMITT M , et al . Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term [J ] . International Journal of Hydrogen Energy , 2007 , 32 ( 16 ): 3797 - 3810 .
ROCHELLE G T . Amine Scrubbing for CO 2 Capture [J ] . Science , 2009 , 325 ( 5948 ): 1652 - 1654 .
ZHANG H , SUN Z , HU Y H . Steam reforming of methane: Current states of catalyst design and process upgrading [J ] . Renewable and Sustainable Energy Reviews , 2021 , 149 : 111330 .
ALEXANDER C , JOHTO H , LINDGREN M , et al . Comparison of environmental performance of modern copper smelting technologies [J ] . Cleaner Environmental Systems , 2021 , 3 : 100052 .
徐忆明 . 铜冶炼产品碳足迹核算方法与优化路径 [J ] . 有色金属工程 , 2024 , 14 ( 8 ): 67 - 76 .
XU Y M . Calculation method and optimization path of carbon footprint of copper smelting products [J ] . Nonferrous Metals Engineering , 2024 , 14 ( 8 ): 67 - 76
李劼 , 黄小卫 , 刘桂华 , 等 . 铝冶炼低碳清洁智能化创新发展研究 [J ] . 中国工程科学 , 2024 , 26 ( 5 ): 223 - 233 .
LI J , HUANG X W , LIU G H , et al . Innovative development of low-carbon,clean,and intelligent aluminum metallurgy [J ] . Strategic Study of CAE , 2024 , 26 ( 5 ): 223 - 233 .
LONG Q , LI J Q , CHEN C Y , et al . Optimization of iron and aluminum recovery in bauxite [J ] . Journal of Iron and Steel Research International , 2020 , 27 ( 3 ): 310 - 318 .
ZHANG Y , TU Z K . Flow-field design of the bipolar plates in polymer electrolyte membrane fuel cell: Problem, progress, and perspective [J ] . Applications in Energy and Combustion Science , 2024 , 17 : 100244 .
WU F H , CHEN D D , NIU Q , et al . Current status of phosphoric acid preparation technology and future application directions of microbial methods [J ] . Sustainable Chemistry and Pharmacy , 2025 , 43 : 101882 .
ZHANG S M , ZHOU T , LI C R , et al . Research progress and prospect of fluidized bed metallic ore roasting technology: A review [J ] . Fuel , 2024 , 378 : 132717 .
KHANMOHAMMADI S , SAADAT-TARGHI M . Energy and exergy analyses and multi-criteria optimization of a novel waste heat recovery system in the cement factory for cleaner product [J ] . Journal of Environmental Chemical Engineering , 2025 : 115417 .
AO X , ZHANG J , YAN R J , et al . More flexibility and waste heat recovery of a combined heat and power system for renewable consumption and higher efficiency [J ] . Energy , 2025 , 315 : 134392 .
KASAEIAN A , AFSHARI F , MAHMOUDKHANI M , et al . Waste heat recovery by thermodynamic cycles in cement plants: A review [J ] . Energy , 2025 , 314 : 134087 .
HAITAO W , KEKE L , ZUDE C . Thermal environment and waste heat recovery of high-radiant heat workshop [J ] . Journal of Building Engineering , 2024 , 98 : 111014 .
DEEPAK G , SUDHA L , PAULINE S , et al . Thermodynamic modeling and AI-enhanced optimization of a novel tri-level waste heat recovery system for industrial processes [J ] . Thermal Science and Engineering Progress , 2024 , 56 : 103098 .
WU F H , LIU X X , QU G F . High value-added resource utilization of solid waste: Review of prospects for supercritical CO 2 extraction of valuable metals [J ] . Journal of Cleaner Production , 2022 , 372 : 133813 .
JIN W , YANG S H , TANG C B , et al . Green and short smelting process of bismuth sulphide concentrate with pyrite cinder [J ] . Journal of Cleaner Production , 2022 , 377 : 134348 .
ABDALLA S A , ABDULLAH S S , KASSEM A M . An adaptive frame and intelligent control approach for an autonomous hybrid renewable energy technology consisting of PV, wind, and fuel cell innovation [J ] . Alexandria Engineering Journal , 2025 , 114 : 279 - 291 .
WANG H P . Application of new features based on artificial intelligent robot technology in medium-scale urban design pedigree and intelligent management and control [J ] . Intelligent Systems with Applications , 2024 , 22 : 200379 .
YAO Y J , ZHANG P X , SUN F , et al . More resilient polyester membranes for high-performance reverse osmosis desalination [J ] . Science , 2024 , 384 ( 6693 ): 333 - 338 .
CHEN B , YU X , DONG F Q , et al . The application of intelligent control technology for the evaluation of temperature segregation in asphalt mixture paving [J ] . Construction and Building Materials , 2023 , 366 : 130178 .
徐盛华 , 张建玲 . 铅锌冶炼企业实现生态化低碳发展模式 [J ] . 中国矿业 , 2012 , 21 ( 7 ): 45 - 48 .
XU S H , ZHANG J L . Smelting corporation of lead and zinc to achieve ecological and low-carbon development model [J ] . China Mining Magazine , 2012 , 21 ( 7 ): 45 - 48 .
吴思 , 赫佳琳 , 唐思扬 , 等 . 搅拌式反应器用于测定乙醇胺溶液吸收CO 2 动力学研究 [J ] . 应用化工 , 2025 , 54 ( 2 ): 322 - 329+335 .
WU S , HE J L , TANG S Y , et al . Study on the kinetics of CO 2 absorption using MEA solution in stirred tank reactor [J ] . Applied Chemical Industry , 2025 , 54 ( 2 ): 322 - 329+335 .
王克华 , 夏祖虎 , 苏远库 , 等 . 低温甲醇洗装置尾气治理方案选择及应用 [J ] . 中国环保产业 , 2025 , ( 1 ): 57 - 60 .
WANG K H , XIA Z H , SU Y K , et al . Engineering application analysis of multi-zone coupling depth efficiency improvement technology of electrostatic precipitator [J ] . China Environmental Protection Industry , 2025 , ( 1 ): 57 - 60
DU J X , YANG W , XU L L , et al . Review on post-combustion CO 2 capture by amine blended solvents and aqueous ammonia [J ] . Chemical Engineering Journal , 2024 , 488 : 150954 .
XING H Y , YU F , LI X H , et al . Application of ionic liquids in CO 2 capture and conversion: A review [J ] . Separation and Purification Technology , 2025 , 360 : 130981 .
KIM S , SHI H , LEE J Y . CO 2 absorption mechanism in amine solvents and enhancement of CO 2 capture capability in blended amine solvent [J ] . International Journal of Greenhouse Gas Control , 2016 , 45 : 181 - 188 .
JACKSON P , ROBINSON K , PUXTY G , et al . In situ Fourier Transform-Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions [J ] . Energy Procedia , 2009 , 1 ( 1 ): 985 - 994 .
ZHOU X B , LIU C , FAN Y M , et al . Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics [J ] . Energy , 2022 , 255 : 124570 .
LIU W , HUANG Y , ZHANG X J , et al . Heat pump assisted sorption carbon capture with steam condenser heat recovery in a decarbonised coal-fired power plant [J ] . Energy Conversion and Management , 2024 , 319 : 118919 .
MARJANIAN M M , SHAHHOSSEINI S , ANSARI A . Investigation of the ultrasound assisted CO 2 absorption using different absorbents [J ] . Process Safety and Environmental Protection , 2021 , 149 : 277 - 288 .
AGHEL B , JANATI S , ALOBAID F , et al . Application of nanofluids in CO 2 absorption: A Review [J ] . Applied Sciences , 2022 , 12 ( 6 ): 3200 .
PAN S Y , CHUNG T C , HO C C , et al . CO 2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain [J ] . Scientific Reports , 2017 , 7 ( 1 ): 17227 .
DINDI A , QUANG D V , VEGA L F , et al . Applications of fly ash for CO 2 capture, utilization, and storage [J ] . Journal of CO 2 Utilization , 2019 , 29 : 82 - 102 .
LI Z , SHAN H W , QIN X R , et al . Efficient CO 2 capture from flue gases achieving by an electrochemical reactor with porous solid-state electrolyte [J ] . Chemical Engineering Journal , 2025 : 159468 .
ISLAM M A , BAO H , SAHA B B , et al . Improved CO 2 capture capacity of waste sawmill dust derived activated carbon employing novel high-pressure CO 2 activation [J ] . Thermal Science and Engineering Progress , 2024 , 56 : 103075 .
KONG M , SONG L J , LIAO H P , et al . A review on development of post-combustion CO 2 capture technologies: Performance of carbon-based, zeolites and MOFs adsorbents [J ] . Fuel , 2024 , 371 : 132103 .
KIM D Y , BAE W B , MIN H , et al . Sodium cation exchanged zeolites for direct air capture of CO 2 [J ] . Applied Surface Science Advances , 2025 , 25 : 100664 .
MAJCHRZAK-KUCĘBA I , WAWRZYŃCZAK D , ŚCIUBIDŁO A . Experimental investigation into CO 2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon [J ] . Journal of CO 2 Utilization , 2022 , 61 : 102027 .
KAZEMI A , PORDSARI M A , TAMTAJI M , et al . Eco-friendly synthesis and morphology control of MOF-74 for exceptional CO 2 capture performance with DFT validation [J ] . Separation and Purification Technology , 2025 , 361 : 131328 .
SHENG M J , ZHANG X , CHENG H Y , et al . Multi-criteria computational screening of [BMIM ] [DCA ] @MOF composites for CO 2 capture [J ] . Green Chemical Engineering , 2024 , 125 : 23415 .
WANG X , LIU Y X , DAI H X , et al . MOFs-base d porous liquids for CO 2 capture and utilization [J ] . Green Energy & Environment , 2025 , 45 : 3211 .
SHI X Y , LEE G A , LIU S H , et al . Water-stable MOFs and hydrophobically encapsulated MOFs for CO 2 capture from ambient air and wet flue gas [J ] . Materials Today , 2023 , 65 : 207 - 226 .
LUO W J , LI H , JIN M H , et al . Organic frameworks (MOFs, COFs, and HOFs) based membrane materials for CO 2 gas-selective separation: A systematic review [J ] . Separation and Purification Technology , 2025 , 357 : 130195 .
JIANG Y X , CHEN J , CHEN F Q , et al . Synergistic enhancement of Ca-based materials via CeO 2 and Al 2 O 3 co-doping for enhanced CO 2 capture and thermochemical energy storage in calcium looping technology [J ] . Separation and Purification Technology , 2025 , 358 : 130264 .
ZANG P C , TANG J Y , TAO Y H , et al . K 2 CO 3 -doped CaO-based sorbent for CO 2 capture: Performance studies and promotion mechanisms [J ] . Chemical Engineering Journal , 2025 , 505 : 159233 .
ZHOU J X , ZHANG W W , DANG C X , et al . Effect of porous structure on Ni-CaO bifunctional catalysts for the integrated CO 2 capture and methanation process [J ] . Separation and Purification Technology , 2025 , 359 : 130833 .
NIU M Y , YANG H M , ZHANG X C , et al . Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO 2 capture [J ] . ACS Applied Materials & Interfaces , 2016 , 8 ( 27 ): 17312 - 17320 .
SANNA A , UIBU M , CARAMANNA G , et al . A review of mineral carbonation technologies to sequester CO 2 [J ] . Chemical Society Reviews , 2014 , 43 ( 23 ): 8049 - 8080 .
HUIJGEN W J J , WITKAMP G J , COMANS R N J . Mineral CO 2 sequestration by steel slag carbonation [J ] . Environmental Science & Technology , 2005 , 39 ( 24 ): 9676 - 9682 .
PAN S Y , CHEN Y H , FAN L S , et al . CO 2 mineralization and utilization by alkaline solid wastes for potential carbon reduction [J ] . Nature Sustainability , 2020 , 3 ( 5 ): 399 - 405 .
LIANG C Z , FENG F , WU J , et al . Elevating gas separation performance of Pebax-based membranes by blending with a PDMS-PEO block copolymer for CO 2 capture and separation [J ] . Journal of Membrane Science , 2025 , 716 : 123528 .
CHENAR M P , SOLTANIEH M , MATSUURA T , et al . Application of Cardo-type polyimide (PI) and polyphenylene oxide (PPO) hollow fiber membranes in two-stage membrane systems for CO 2 /CH 4 separation [J ] . Journal of Membrane Science , 2008 , 324 ( 1 ): 85 - 94 .
QIN Z K , WEI J , WU Y M , et al . Mixed matrix membranes (MMMs) fabricated via ultrathin Cu-MOF nanosheets for CO 2 /N 2 separation: Low loading but high performance [J ] . Results in Engineering , 2024 , 24 : 103184 .
FAVRE E . Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? [J ] . Journal of Membrane Science , 2007 , 294 ( 1 ): 50 - 59 .
WILEY D E , FLETCHER D F . Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes [J ] . Desalination , 2002 , 145 ( 1 ): 183 - 186 .
SENGUPTA A , RAGHURAMAN B , SIRKAR K K . Liquid membranes for flue gas desulfurization [J ] . Journal of Membrane Science , 1990 , 51 ( 1 ): 105 - 126 .
CHOI S , DRESE J H , JONES C W . Adsorbent materials for carbon dioxide capture from large anthropogenic point sources [J ] . ChemSusChem , 2009 , 2 ( 9 ): 796 - 854 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构