浏览全部资源
扫码关注微信
1.安徽海螺集团有限责任公司,安徽 芜湖 241000
2.安徽海螺集团产业技术研究院有限公司,安徽 芜湖 241000
陈永波(1965—),本科,高级工程师,研究方向为无机非金属材料,E-mail:chenyb1888@163.com。
汤驰洲(1991—),博士,工程师,研究方向为二氧化碳转化,E-mail:tangchizhou@163.com。
收稿日期:2025-01-13,
修回日期:2025-03-12,
网络出版日期:2025-07-14,
移动端阅览
陈永波,王文超,晋川川等.蒸氨法合成Cu/ZnO/ZrO2催化剂用于CO2加氢制甲醇性能研究[J].低碳化学与化工,
CHEN Yongbo,WANG Wenchao,JIN Chuanchuan,et al.Study on performances of Cu/ZnO/ZrO2 catalysts synthesized by ammonia evaporation method for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,
陈永波,王文超,晋川川等.蒸氨法合成Cu/ZnO/ZrO2催化剂用于CO2加氢制甲醇性能研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250014.
CHEN Yongbo,WANG Wenchao,JIN Chuanchuan,et al.Study on performances of Cu/ZnO/ZrO2 catalysts synthesized by ammonia evaporation method for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250014.
为提升CO
2
加氢制甲醇催化剂的活性并提高其合成过程的原子经济性,采用蒸氨法替代传统共沉淀法合成了Cu/ZnO/ZrO
2
催化剂,并应用于CO
2
加氢制甲醇反应。系统考察了共沉淀法与蒸氨法及不同蒸氨温度对催化剂结构和催化性能的影响。通过XRD、N
2
吸/脱附和紫外可见吸收光谱等手段,对催化剂的物相组成、晶粒尺寸及比表面积等结构特征进行了表征分析。结果表明,与共沉淀法制备的催化剂相比,75 ℃下蒸氨法合成的催化剂(CuZnZr-75)中Cu与Zn分布更均匀,焙烧后形成的CuO晶粒尺寸更小,因而拥有更多Cu-Zn界面活性位点。在反应物配比
n
(H
2
):
n
(CO
2
) = 3:1、质量空速(
WHSV)为24000 mL/(g·h)、反应压力为2 MPa和温度为220 ℃条件下,采用固定床反应器对催化剂的CO
2
加氢制甲醇性能进行了评价。结果表明,蒸氨法有助于构筑更高活性的催化位点,最优情况(CuZnZr-75)下,单位催化剂表面积上的甲醇时空产率由共沉淀法制备催化剂的3.96 mg/(m
2
·h)提升至6.33 mg/(m
2
·h),且CO
2
转化率达到6.98%。
To enhance the catalytic activity for CO
2
hydrogenation to methanol and improve the atom economy of the synthesis process
Cu/ZnO/ZrO
2
catalysts were prepared using the ammonia evaporation method instead of the traditional co-precipitation method
and their performance in CO
2
hydrogenation to methanol was investigated. The effects of the synthesis method and ammonia evaporation temperatures on the structures and catalytic performances of catalysts were systematically studied. The phase compositions
crystallite sizes and specific surface areas of the catalysts were characterized by XRD
N
2
adsorption/desorption
and UV-Vis spectroscopy. The results show that compared with the catalyst prepared by the co-precipitation method
the catalyst (CuZnZr-75) synthesized via ammonia evaporation at 75 °C exhibits a more homogeneous distribution of Cu and Zn. After calcination
the resulting CuO crystallite size is smaller
leading to the formation of more Cu-Zn interfacial active sites. Under reaction conditions of
n
(H
2
):
n
(CO
2
) = 3:1
weight hourly space velocity (WHSV) of 24000 mL/(g·h)
pressure of 2 MPa and temperature of 220 ℃
the catalytic performance was evaluated in a fixed-bed reactor. The results indicate that the ammonia evaporation method facilitates the construction of more highly active catalytic sites. Under optimal condition (CuZnZr-75)
the methanol space-time yield per unit catalyst surface area increases from 3.96 mg/(m
2
·h) for the co-precipitated catalyst to 6.33 mg/(m
2
·h)
and the CO
2
conversion rate reaches 6.98%.
贺树民 , 彭万旺 , 王学云 . 不同碳减排下生物质气化制绿色甲醇的经济性分析 [J ] . 低碳化学与化工 , 2025 , 50 ( 6 ): 89 - 96 .
HE S M , PENG W W , WANG X Y . Economic analysis of biomass gasification for green methanol production under different carbon emission reduction scenarios [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 6 ): 89 - 96 .
朱超 , 田地 , 张浩杰 , 等 . 二氧化碳加氢制甲醇与电解制甲醇系统技术经济性分析 [J ] . 低碳化学与化工 , 2023 , 48 ( 1 ): 117 - 124 .
ZHU C , TIAN D , ZHANG H J , et al . System techno-economic analysis of CO 2 hydrogenation to methanol and electrolysis to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 1 ): 117 - 124 .
于昕瑶 , 杨杰 , 檀结东 , 等 . 甲醇合成技术现状及其发展趋势 [J ] . 能源化工 , 2024 , 45 ( 3 ): 12 - 20 .
YU X Y , YANG J , TAN J D , et al . Current status and development trends of methanol synthesis technology [J ] . Energy Chemical Industry , 2024 , 45 ( 3 ): 12 - 20 .
BEHRENS M . Coprecipitation: An excellent tool for the synthesis of supported metal catalysts—From the understanding of the well known recipes to new materials [J ] . Catalysis Today , 2015 , 246 : 46 - 54 .
ETIM U J , SONG Y B , ZHONG Z Y . Improving the Cu/ZnO-Based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media [J ] . Frontiers in Energy Research , 2020 , 8 : 545431 .
兰张 , 陈标华 , 宁王 . CuZn/CeO 2 催化剂 在CO 2 加氢制甲醇中的应用研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 100 - 106 .
LAN Z , CHEN B H , NING W . Study on application of CuZn/CeO 2 catalysts in CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 100 - 106 .
BEHRENS M , ZANDER S , KURR P , et al . Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO: Al [J ] . Journal of the American Chemical Society , 2013 , 135 ( 16 ): 6061 - 6068 .
JUN K W , SHEN W J , RAO K R , et al . Residual sodium effect on the catalytic activity of Cu/ZnO/Al 2 O 3 in methanol synthesis from CO 2 hydrogenation [J ] . Applied Catalysis A: General , 1998 , 174 ( 1/2 ): 231 - 238 .
ZHANG H T , HAN C Y , LI C M , et al . Design of Cu/ZnO/Al 2 O 3 catalysts with a rich Cu-ZnO interface for enhanced CO 2 hydrogenation to methanol using zinc-malachite as the precursor [J ] . New Journal of Chemistry , 2023 , 47 ( 12 ): 5885 - 5893 .
GAO P , LI F , ZHAN H J , et al . Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO 2 hydrogenation to methanol [J ] . Journal of Catalysis , 2013 , 298 : 51 - 60 .
SUN J T , METCALFE I S , SAHIBZADA M . Deactivation of Cu/ZnO/Al 2 O 3 methanol synthesis catalyst by sintering [J ] . Industrial & Engineering Chemistry Research , 1999 , 38 ( 10 ): 3868 - 3872 .
BECK A , NEWTON M A , VAN DE WATER L G A , et al . The enigma of methanol synthesis by Cu/ZnO/Al 2 O 3 -based catalysts [J ] . Chemical Reviews , 2024 , 124 ( 8 ): 4543 - 4678 .
JIANG X , NIE X W , GUO X W , et al . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J ] . Chemical Reviews , 2020 , 120 ( 15 ): 7984 - 8034 .
BEHRENS M , KIßNER S , GIRSGDIES F , et al . Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors [J ] . Chemical Communications , 2011 , 47 ( 6 ): 1701 - 1703 .
CHINCHEN G C , WAUGH K C , WHAN D A . The activity and state of the copper surface in methanol synthesis catalysts [J ] . Applied Catalysis , 1986 , 25 ( 1/2 ): 101 - 107 .
HU Y W , WANG N , ZHOU Z M . Synergetic effect of Cu active sites and oxygen vacancies in Cu/CeO 2 -ZrO 2 for the water-gas shift reaction [J ] . Catalysis Science & Technology , 2021 , 11 ( 7 ): 2518 - 2528 .
TOYIR J , DE LA PISCINA P R , FIERRO J L G , et al . Catalytic performance for CO 2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors [J ] . Applied Catalysis B: Environmental , 2001 , 34 ( 4 ): 255 - 266 .
ZABILSKIY M , SUSHKEVICH V L , PALAGIN D , et al . The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol [J ] . Nature Communications , 2020 , 11 ( 1 ): 2409 .
DIN I U , SHAHARUN M S , ALOTAIBI M A , et al . Recent developments on heterogeneous catalytic CO 2 reduction to methanol [J ] . Journal of CO 2 Utilization , 2019 , 34 : 20 - 33 .
ZHANG L H , ZHENG C , LI F , et al . Copper-containing mixed metal oxides derived from layered precursors: Control of their compositions and catalytic properties [J ] . Journal of Materials Science , 2007 , 43 ( 1 ): 237 - 243 .
BALTES C , VUKOJEVIC S , SCHUTH F . Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al 2 O 3 catalysts for methanol synthesis [J ] . Journal of Catalysis , 2008 , 258 ( 2 ): 334 - 344 .
GAO P , LI F , ZHAO N , et al . Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO 2 hydrogenation to methanol [J ] . Applied Catalysis A: General , 2013 , 468 : 442 - 452 .
ZANDER S , SEIDLHOFER B , BEHRENS M . In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu, Zn hydroxycarbonates—Consequences for the preparation of Cu/ZnO catalysts [J ] . Dalton Transactions , 2012 , 41 ( 43 ): 13413 - 13422 .
BEHRENS M . Meso- and nano-structuring of industrial Cu/ZnO/(Al 2 O 3 ) catalysts [J ] . Journal of Catalysis , 2009 , 267 ( 1 ): 24 - 29 .
BEHRENS M , BRENNECKE D , GIRGSDIES F , et al . Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al 2 O 3 catalysts investigated by titration experiments [J ] . Applied Catalysis A: General , 2011 , 392 ( 1/2 ): 93 - 102 .
BEHRENS M , GIRGSDIES F . Structural effects of Cu/Zn substitution in the malachite-rosasite system [J ] . Zeitschrift für anorganische und allgemeine Chemie , 2010 , 636 ( 6 ): 919 - 927 .
ZHENG H Y , NARKHEDE N , ZHANG H C , et al . Oriented isomorphous substitution: An efficient and alternative route to fabricate the Zn rich phase pure (Cu 1- x ,Zn x ) 2 (OH) 2 CO 3 precursor catalyst for methanol synthesis [J ] . ChemCatChem , 2020 , 12 ( 7 ): 2040 - 2049 .
ONISHI N , HIMEDA Y . Homogeneous catalysts for CO 2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation [J ] . Coordination Chemistry Reviews , 2022 , 472 : 214767 .
LUNKENBEIN T , GIRGSDIES F , KANDEMIR T , et al . Bridging the time gap: A copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales [J ] . Angewandte Chemie International Edition , 2016 , 55 ( 41 ): 12708 - 12712 .
WANG J J , LI G N , LI Z L , et al . A highly selective and stable ZnO -ZrO 2 solid solution catalyst for CO 2 hydrogenation to methanol [J ] . Science Advances , 2017 , 3 ( 10 ): e1701290 .
WITOON T , KACHABAN N , DONPHAI W , et al . Tuning of catalytic CO 2 hydrogenation by changing composition of CuO-ZnO-ZrO 2 catalysts [J ] . Energy Conversion and Management , 2016 , 118 : 21 - 31 .
邱诗铭 , 闫冠杰 , 李春流 , 等 . 蒸氨法制备绿铜锌矿晶体的工艺研究 [J ] . 人工晶体学报 , 2024 , 53 ( 4 ): 701 - 706 .
QIU S M , YAN G J , LI C L , et al . Process of preparing aurichalcite by ammonia distillation method [J ] . Journal of Synthetic Crystals , 2024 , 53 ( 4 ): 701 - 706 .
王丹君 , 陶芙蓉 , 赵华华 , 等 . Cu/ZnO/Al 2 O 3 催化剂的共沉淀-蒸氨法制备及其对二氧化碳加氢制甲醇的研究 [J ] . 分子催化 , 2011 , 25 ( 2 ): 124 - 129 .
WANG D J , TAO F R , ZHAO H , et al . Preparation of Cu/ZnO/Al 2 O 3 catalyst via coprecipition-amonia evaporation for methanol synthesis from CO 2 and H 2 [J ] . Journal of Molecular Catalysis (China) , 2011 , 25 ( 2 ): 124 - 129 .
WANG S , SONG L X , QU Z P . Cu/ZnAl 2 O 4 catalysts prepared by ammonia evaporation method: Improving methanol selectivity in CO 2 hydrogenation via regulation of metal-support interaction [J ] . Chemical Engineering Journal , 2023 , 469 : 144008 .
SMITH P J , KONDRAT S A , CHATER P A , et al . A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation [J ] . Chemical Science , 2017 , 8 ( 3 ): 2436 - 2447 .
KLOKISHNER S , BEHRENS M , REU O , et al . Cation ordering in natural and synthetic (Cu 1- x Zn x ) 2 CO 3 (OH) 2 and (Cu 1- x Zn x ) 5 (CO 3 ) 2 (OH) 6 [J ] . The Journal of Physical Chemistry A , 2011 , 115 ( 35 ): 9954 - 9968 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构