浏览全部资源
扫码关注微信
沈阳化工大学 化学工程学院,辽宁 沈阳 110142
贺洋(1998—),硕士研究生,研究方向为低碳化工催化剂,E-mail:1048367034@qq.com。
王康军(1979—),博士,教授,研究方向为能源转化与催化材料,E-mail:wangkj_dut@syuct.edu.cn;
刘蝈蝈(1988—),博士,副教授,研究方向为碳一化工与低碳化工催化剂,E-mail:lguoguo@syuct.edu.cn。
收稿日期:2025-01-09,
修回日期:2025-03-02,
网络出版日期:2025-06-16,
移动端阅览
贺洋,曹媛,王馨艺等.基于密度泛函理论计算Cu价态对1,4-丁二醇脱氢制备γ-丁内酯反应的影响[J].低碳化学与化工,
HE Yang,CAO Yuan,WANG Xinyi,et al.Influence of valence states of Cu on dehydrogenation of 1,4-butanediol to γ-butyrolactone based on density functional theory calculation[J].Low-Carbon Chemistry and Chemical Engineering,
贺洋,曹媛,王馨艺等.基于密度泛函理论计算Cu价态对1,4-丁二醇脱氢制备γ-丁内酯反应的影响[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250012.
HE Yang,CAO Yuan,WANG Xinyi,et al.Influence of valence states of Cu on dehydrogenation of 1,4-butanediol to γ-butyrolactone based on density functional theory calculation[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250012.
γ
-丁内酯(GBL)作为
重要的工业原料,其需求量日益增大。Cu基催化剂上的1
4-丁二醇(BDO)脱氢是目前主要采用的GBL制备方法。然而,该方法中Cu基催化剂上的脱氢反应机制及Cu价态对反应的影响亟待深入研究。采用密度泛函理论计算并分析了Cu基催化剂上BDO脱氢制GBL的反应过程,对比了不同反应路径的能垒,并对Cu
+
-完美型催化剂、Cu
+
-缺陷型催化剂、Cu
0
催化剂和Cu
0
/Cu
+
复合型催化剂上物质的吸附能、过渡态等进行了研究。结果表明,最可能发生的反应路径(路径A)为BDO先脱去两个氢原子后环化生成2-羟基四氢呋喃(2-HTHF),随后2-HTHF脱去两个氢原子生成GBL,路径A的决速步能垒为287.67 kJ/mol。在路径A下,Cu
+
对BDO、2-HTHF等分子具有较强的吸附性能,而Cu
0
则更易于活化 H
2
;Cu
+
、氧空位均能有效促进O—H键与C—H键的断裂,并活化BDO和2-HTHF;在H
2
覆盖率较低的情况下,Cu
0
对 H
2
合成有明显的促进作用。与其他3种催化剂相比,Cu
0
/Cu
+
复合型催化剂的催化性能更好。
As an important industrial raw material
γ
-butyrolactone (GBL) is in increasing demand day by day. Currently
the dehydrogenation of 1
4-butanediol (BDO) over Cu-based catalysts represents the predominant method for GBL preparation. However
the dehydrogenation reaction mechanism on Cu-based catalysts and the influence of the Cu valence states on the reaction remain to be thoroughly investigated. The reaction process of BDO dehydrogenation to GBL on Cu-based catalysts was calculated and analyzed by density functional theory. The energy barriers of different reaction pathways were compared
and the adsorption energies
transition states
etc. of substances on Cu
+
-perfect type catalyst
Cu
+
-defect type catalyst
Cu
0
catalyst and Cu
0
/Cu
+
composite type catalyst were studied. The results show that the most probable reaction pathway (pathway A) involves BDO first eliminating two hydrogen atoms follows by cyclization to form 2-hydroxytetrahydrofuran (2-HTHF)
which then loses two additional hydrogen atoms to yield GBL
with the rate-determining step of pathway A having an energy barrier of 287.67 kJ/mol. Under pathway A
Cu
+
demonstrates strong adsorption towards BDO and 2-HTHF molecules
while Cu
0
exhibits greater aptitude for H
2
activation. Bot
h Cu
+
and oxygen vacancy effectively facilitate the breaking of O—H and C—H bonds
activating BDO and 2-HTHF
and Cu⁰ significantly promotes H
2
synthesis under low H
2
coverage conditions. Notably
Cu⁰/Cu
+
composite catalyst outperforms the other three catalysts in terms of catalytic performance.
梁斌 , 李宝岩 , 金荣华 , 等 . γ -丁内酯的工业应用进展 [J ] . 上海师范大学学报(自然科学版) , 2021 , 50 ( 5 ): 629 - 635 .
LIANG B , LI B Y , JIN R H , et al . Progress in industrial application of γ -butyrolactone [J ] . Journal of Shanghai Normal University (Natural Sciences) , 2021 , 50 ( 5 ): 629 - 635 .
李晶 , 张军 . γ -丁内酯制备N-甲基吡咯烷酮的研究 [J ] . 合成技术及应用 , 2014 , 29 ( 1 ): 10 - 14 .
LI J , ZHANG J . Study on the preparation of N-methyl pyrrolidone with γ -butyrolactone [J ] . Synthetic Technology and Application , 2014 , 29 ( 1 ): 10 - 14 .
杨理 , 宋国全 , 李雅楠 . 1, 4-丁二醇脱氢制备 γ -丁内酯副产氢气纯化工业化研究 [J ] . 河南化工 , 2020 , 37 ( 8 ): 18 - 21 .
YANG L , SONG G Q , LI Y N . Industrial Research of hydrogen purification from dehydrogenation of 1,4-butanediol to γ -butyrolactone [J ] . Henan Chemical Industry , 2020 , 37 ( 8 ): 18 - 21 .
曾毅 , 王公应 . 1, 4—丁二醇脱氢制备 γ -丁内酯的催化剂及工艺的研究 [J ] . 化学工业与工程技术 , 2004 , ( 5 ): 5 - 7+61 .
ZENG Y , WANG G Y . Study on catalyst and process for producing γ -dutyrolactone from l, 4-butanediol dehydrogenation [J ] . Journal of Chemical Industry & Engineering , 2004 ( 5 ): 5 - 7+61 .
李太平 , 张涛 , 黄家兴 , 等 . 顺酐加氢制备 γ -丁内酯催化剂研究进展 [J ] . 应用化工 , 2023 , 52 ( 7 ): 2192 - 2197+2201 .
LI T P , ZHANG T , HUANG J X , et al . Research progress on catalysts for hydrogenation of maleic anhydride to γ -butyrolactone [J ] . Applied Chemical Industry , 2023 , 52 ( 7 ): 2192 - 2197+2201 .
杨琴 . 催化剂制备条件对顺酐加氢制备 γ -丁内酯的影响 [J ] . 广州化工 , 2015 , 43 ( 8 ): 94 - 95+103 .
YANG Q . Effects of preparation conditions of catalyst on hydrogenation of maleic anhydride to γ -butyrolactone [J ] . Guangzhou Chemical Industry , 2015 , 43 ( 8 ): 94 - 95+103 .
季俊红 , 张丽楠 . 顺酐加氢制备 γ -丁内酯催化剂研究进展 [J ] . 化工中间体 , 2012 , 9 ( 7 ): 6 - 8 .
JI J H , ZHANG L N . Progress on catalysts for hydrogenation of maleic anhydrite to prepare γ -butyrolactone [J ] . Chemical Intermediates , 2012 , 9 ( 7 ): 6 - 8 .
SILVA R G C , FERREIRA T F , BORGES É R . Identification of potential technologies for 1,4-butanediol production using prospecting methodology [J ] . Journal of Chemical Technology & Biotechnology , 2020 , 95 ( 12 ): 3057 - 3070 .
李强 . α -乙酰基- γ -丁内酯的合成优化 [J ] . 化工设计通讯 , 2019 , 45 ( 10 ): 145 - 146 .
LI Q . Optimization of Synthesis of α -acetyl- γ -butyrolactone [J ] . Chemical Engineering Design Communications , 2019 , 45 ( 10 ): 145 - 146 .
张忠翼 , 赵代胜 , 陈儒佳 , 等 . 1,4-丁二醇工艺路线及经济性分析 [J ] . 化工设计 , 2024 , 34 ( 4 ): 13-18+30 + 1 .
ZHANG Z Y , ZHAO D S , CHEN R J , et al . Process route and economic analysis of 1,4-butanediol [J ] . Chemical Engineering Design , 2024 , 34 ( 4 ): 13-18+30 + 1 .
BHANUSHALI J T , PRASAD D , PATIL K N , et al . Tailoring the catalytic activity of basic mesoporous Cu/CeO 2 catalyst by Al 2 O 3 for selective lactonization and dehydrogenation of 1,4-butanediol to γ -butyrolactone [J ] . Catalysis Communications , 2020 , 143 : 106049 .
LONG Y , LIU S M , FEI Y Q , et al . Nano CuO/ZSM-5 zeolite as a green and efficient catalyst for dehydration of 1,4-butanediol to tetrahydrofuran [J ] . Science China Chemistry , 2017 , 60 : 964 - 969 .
LEITE L , STONKUS V , ILIEVA L , et al . Promoting effect of gold on the structure and activity of Co/kaolin catalyst for the 2,3-dihydrofuran synthesis [J ] . Catalysis Communications , 2002 , 3 ( 8 ): 341 - 347 .
徐炎燕 . 生物基热塑性聚酯弹性体的设计合成与工艺研究 [D ] . 北京 : 北京化工大学 , 2022 .
XU Y Y . Design, synthesis and process research of bio-based thermoplastic polyester elastomer [D ] . Beijing : Beijing University of Chemical Technology , 2022 .
LIU H L , JIANG Y Y , ZHAO H Y , et al . Preparation of highly dispersed Cu catalysts from hydrotalcite precursor for the dehydrogenation of 1,4-butanediol [J ] . Journal of Industrial and Engineering Chemistry , 2021 , 102 : 251 - 259 .
REDDY K H P , ANAND N , VENKATESWARLU V , et al . A selective synthesis of 1-phenylethanol and γ -butyrolactone through coupling processes over Cu/MgO catalysts [J ] . Journal of Molecular Catalysis A: Chemical , 2012 , 355 : 180 - 185 .
VADDEBOINA V , KANNAPU H P R , JEON J K , et al . Coupling of nitrobenzene hydrogenation and 1,4-butanediol dehydrogenation for the simultaneous synthesis of aniline and γ -butyrolactone over copper-based catalysts [J ] . Korean Journal of Chemical Engineering , 2022 , 39 : 109 - 115 .
PATIL K N , PRASAD D , MANOORKAR V K , et al . Selective vapour-phase dehydrocyclization of biomass-derived 1,4-butanediol to γ -butyrolactone over Cu/ZnAl 2 O 4 -CeO 2 catalyst [J ] . Journal of Industrial and Engineering Chemistry , 2022 , 106 : 142 - 151 .
CHONG S Y , ZHAO S , LI J Y , et al . Enhanced the dehydrocyclization of 1,4-butanediol to γ -butyrolactone via the regulation of interface oxygen vacancies in Cu/MgO-CeO 2 catalyst [J ] . Chemical Engineering Journal , 2024 , 489 : 151366 .
GAO Z , ZHANG F , ZHOU Y . Research on reaction conditions of hydrogenation of maleic anhydride to gamma-butyrolactone catalyzed by La doped Ru-based catalyst [J ] . Applied Chemical Industry , 2012 , 41 ( 9 ): 1531 .
DELLEY B . Fast calculation of electrostatics in crystals and large molecules [J ] . The Journal of Physical Chemistry , 1996 , 100 ( 15 ): 6107 - 6110 .
孟宁 . 新的丁内酯衍生物对血管形成的影响及其作用机制研究 [D ] . 济南 : 山东大学 , 2008 .
MENG N . Effects of a novel butyrolactone derivative on angiogenesis and the corresponding mechanisms [D ] . Jinan : Shandong University , 2008
ERNZERHOF M , SCUSERIA G E . Assessment of the perdew-burke-ernzerhof exchange-correlation functional [J ] . The Journal of Chemical Physics , 1999 , 110 ( 11 ): 5029 - 5036 .
JIANG Y Q , PENG P . Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory [J ] . Acta Physica Sinica , 2018 , 67 ( 13 ): 272 - 284 .
翟林峰 , 王华林 , 史铁钧 . N-乙烯基吡咯烷酮的合成工艺研究 [J ] . 化工中间体 , 2006 , ( 6 ): 16 - 19 .
ZHAI L F , WANG H L , SHI T J . Process for the synthesis of N-vinylpynolidone [J ] . Chemical Intermediates , 2006 , ( 6 ): 16 - 19 .
苏桂田 , 徐佳 , 肖楠 , 等 . 玫红酸钡分子结构及荧光光谱的PM7半经验分子轨道法研究 [J ] . 计算机与应用化学 , 2016 , 33 ( 9 ): 959 - 962 .
SU G T , XU J , XIAO N , et al . Study on molecular structure and fluorescence spectra of barium rhodizonate precipitate by PM7 method [J ] . Computers and Applied Chemistry , 2016 , 33 ( 9 ): 959 - 962 .
HIRSHFELD F L . Bonded-atom fragments for describing molecular charge densities [J ] . Theoretica Chimica Acta , 1977 , 44 : 129 - 138 .
AN J W , WANG X H , ZHAO J X , et al . Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: Effect of copper valence state [J ] . Molecular Catalysis , 2020 , 482 : 110667 .
SHI J , ZHANG L , WU P , et al . Producing oxygen vacancies on surface of metal oxide catalyst , involves stirring metal oxide catalyst in acid solution , separating and drying to oxidize catalyst followed by annealing to obtain metal oxide catalyst with oxygen vacancies: 113492004-A [P ] . 2021-02-22 .
ZHANG X X , FEI N , WANG Q H , et al . Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: A combined kinetics and mechanistic investigation [J ] . Journal of Materials Chemistry A , 2024 , 12 ( 33 ): 21884 - 21894 .
CHEN W , XU J , HUANG F J , et al . CO oxidation over CuO x /TiO 2 catalyst: The importance of oxygen vacancies and Cu + species [J ] . Applied Surface Science , 2023 , 618 : 156539 .
江寒梅 . 1,4-丁二醇气相脱氢制 γ- 丁内酯反应催化剂的研究 [D ] . 重庆 : 重庆大学 , 2012 .
JIANG H M . Study on the catalyst for preparation of γ -butyrolactone by vaper-phase dehydrogenation of 1,4-butanediol [D ] . Chongqing : Chongqing University , 2012 .
ZHANG R G , WANG B J , LING L X , et al . Adsorption and dissociation of H 2 on the Cu 2 O(111) surface: A density functional theory study [J ] . Applied Surface Science , 2010 , 257 ( 4 ): 1175 - 1180 .
王艳珍 . 煤化工生产技术路线及产品现状 [J ] . 广东化工 , 2024 , 51 ( 17 ): 90 - 91 .
WANG Y Z . Technical route and products status of coal chemical production [J ] . Guangdong Chemical Industry , 2024 , 51 ( 17 ): 90 - 91 .
伦国栋 , 严伟琦 , 周静红 , 等 . 铜催化草酸二甲酯加氢副产物1,2-丙二醇生成机理的DFT研究 [J ] . 燃料化学学报(中英文) , 2024 , 52 ( 4 ): 553 - 564 .
LUN G D , YAN W Q , ZHOU J H , et al . A DFT study on the formation mechanism of side product 1,2-propanediol in the hydrogenation of dimethyl oxalate over copper catalyst [J ] . Journal of Fuel Chemistry and Technology , 2024 , 52 ( 4 ): 553 - 564 .
张静玮 . CuNi/SiO 2 双金属催化剂催化乙酸加氢反应研究 [D ] . 天津 : 天津大学 , 2020 .
ZHANG J W . Study on CuNi/SiO 2 bimetallic catalyst for acetie acid hydrogenation [D ] . Tianjin : Tianjin University , 2020 .
LEE K Y , HUANG Y J . Low CO generation on tunable oxygen vacancies of non-precious metallic Cu/ZnO catalysts for partial oxidation of methanol reaction [J ] . Applied Catalysis B: Environmental , 2014 , 150 : 506 - 514 .
CHEN W , SHEN H , ZHU X X , et al . Insight into the effect of oxygen vacancy prepared by different methods on CuO/anatase catalyst for CO catalytic oxidation [J ] . Catalysts , 2022 , 13 ( 1 ): 70 .
JIANG J C , YANG H , JIANG H , et al . Boosting catalytic activity of Cu-Ce solid solution catalysts by flame spray pyrolysis with high Cu + concentration and oxygen vacancies [J ] . Chemical Engineering Journal , 2023 , 471 : 144439 .
YU X H , ZHANG X M , WANG H T , et al . High-coverage H 2 adsorption on the reconstructed Cu 2 O(111) surface [J ] . The Journal of Physical Chemistry C , 2017 , 121 ( 40 ): 22081 - 22091 .
CHEN C Q , RUAN C X , ZHAN Y Y , et al . The significant role of oxygen vacancy in Cu/ZrO 2 catalyst for enhancing water-gas-shift performance [J ] . International Journal of Hydrogen Energy , 2014 , 39 ( 1 ): 317 - 324 .
LI X , CUI Y Y , YANG X L , et al . Highly efficient and stable Au/Mn 2 O 3 catalyst for oxidative cyclization of 1,4-butanediol to γ -butyrolactone [J ] . Applied Catalysis A: General , 2013 , 458 : 63 - 70 .
ZHENG X H , YU P J , LIU Y X , et al . Efficient hydrogenation of methyl palmitate to hexadecanol over Cu/ m -ZrO 2 catalysts: Synergistic effect of Cu species and oxygen vacancies [J ] . ACS Catalysis , 2023 , 13 ( 3 ): 2047 - 2060 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构