浏览全部资源
扫码关注微信
1.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
2.宁夏计量质量检验检测研究院 国家煤及煤化工产品质量检验检测中心(宁夏),宁夏 银川 750200
3.国家能源集团 宁夏煤业有限责任公司 煤炭化学工业技术研究院,宁夏 银川 750411
刘洋(1999—),硕士研究生,研究方向为CO2催化转化,E-mail:liuyang271210@163.com。
雍晓静(1978—),博士,正高级工程师,研究方向为煤化工,E-mail:377748087@qq.com。
高新华(1990—),博士,研究员,研究方向为碳一化学,E-mail:gxh@nxu.edu.cn;
收稿日期:2024-12-31,
修回日期:2025-03-10,
网络出版日期:2025-04-27,
纸质出版日期:2025-05-25
移动端阅览
刘洋,田菊梅,李海鹏等.光热催化CO2甲烷化Ni基催化剂研究进展[J].低碳化学与化工,
LIU Yang,TIAN Jumei,LI Haipeng,et al.Research progress on Ni-based catalysts for photothermal catalytic CO2 methanation[J].Low-Carbon Chemistry and Chemical Engineering,
刘洋,田菊梅,李海鹏等.光热催化CO2甲烷化Ni基催化剂研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240522.
LIU Yang,TIAN Jumei,LI Haipeng,et al.Research progress on Ni-based catalysts for photothermal catalytic CO2 methanation[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240522.
化石能源的过度利用使CO
2
排放量逐年增大,光热催化CO
2
甲烷化为碳资源循环利用提供了新途径。光热催化CO
2
甲烷化结合了光催化和热催化优势,通过降低反应活化能与温度,突破低温动力学限制,实现CO
2
的高效催化转化。Ni基催化剂因其活性高、成本低被用于光热催化CO
2
甲烷化。首先介绍了CO
2
甲烷化的反应机理和反应路径,然后探讨了不同载体对光热催化CO
2
甲烷化Ni基催化剂催化性能的调控机制,最后综述了新型负载型单原子Ni基催化剂的研究进展,为光热催化CO
2
甲烷化催化剂的设计与开发提供了思路。
The excessive utilization of fossil energy has increased CO
2
emissions year by year. Photothermal catalytic CO
2
methanation is expected to provide a solution for the recycling of carbon resources. Photothermal catalytic CO
2
methanation combines the advantages of photocatalysis and thermocatalysis
breaking through the low-temperature kinetic limitations by reducing the activation energy barrier and the reaction temperature to achieve efficient catalytic conversion of CO
2
. Ni-based catalysts are used for photothermal catalytic CO
2
methanation due to it high activity and low cost. Firstly
the reaction mechanism and reaction path of photothermal catalytic CO
2
methanation were introduced. Then
the regulation mechanism of different supports on the catalytic performance of Ni-based catalysts for photothermal catalytic CO
2
methanation was studied. Finally
the research progress on the new monoatomic Ni-based catalysts was reviewed
providing ideas for the design and development of catalysts for photothermal CO
2
methanation reaction.
PAJHARE D , SPIVEY J . A review of dry (CO 2 ) reforming of methane over noble metal catalysts [J ] . Chemical Society Reviews , 2014 , 43 ( 22 ): 7813 - 7837 .
LU J L , FU B S , KUNG M C , et al . Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition [J ] . Science , 2012 , 335 ( 6073 ): 1212906 .
薛耀 , 李金昊 , 杨志佳 , 等 . 太阳能直接驱动CH 4 和CO 2 干重整技术进展 [J ] . 洁净煤技术 , 2024 , 30 ( 4 ): 21 - 40 .
XUE Y , LI J H , YANG Z J , et al . Research progress in solar-driven CH 4 and CO 2 dry reforming technologies [J ] . Clean Coal Technology , 2024 , 30 ( 4 ): 21 - 40 .
李海鹏 , 吴桐 , 王琪 , 等 . 透水NaA分子筛膜强化的CO 2 加氢高效制甲醇 [J ] . 化工进展 , 2024 , 43 ( 5 ): 2834 - 2842 .
LI H P , WU T , WANG Q , et al . Effective methanol production by CO 2 hydrogenation using water-permeable NaA zeolite membrane [J ] . Chemical Industry and Engineering Progress , 2024 , 43 ( 5 ): 2834 - 2842 .
SONG W L , WANG K Z , WANG X , et al . Boosting low temperature CO 2 methanation by tailoring Co species of CoAlO catalysts [J ] . Chemical Engineering Science , 2024 , 298 : 120405 .
高新华 , 卢鹏飞 , 陈国辉 , 等 . K-Fe 3 O 4 /Ni-AlMCM-41串联催化CO 2 加氢制高碳烃 [J ] . 燃料化学学报 , 2021 , 49 ( 4 ): 504 - 512 .
GAO X H , LU P F , CHEN G H , et al . Performance of K-Fe 3 O 4 /Ni-AlMCM-41 tandem catalyst for CO 2 hydrogenation to long-chain hydrocarbons [J ] . Journal of Fuel Chemistry and Technology , 2021 , 49 ( 4 ): 504 - 512 .
MOTA F M , KIM D H . From CO 2 methanation to ambitious long-chain hydrocarbons: Alternative fuels paving the path to sustainability [J ] . Chemical Society Reviews , 2019 , 48 ( 1 ): 205 - 259 .
ZHU X L , ZONG H B , PÉREZ C J V , et al . Supercharged CO 2 photothermal catalytic methanation: High conversion, rate, and selectivity [J ] . Angewandte Chemie International Edition , 2023 , 135 ( 22 ): e202218694 .
RONSCH S , SCHNEIDER J , MATTHISCHKE S , et al . Review on methanation-from fundamentals to current projects [J ] . Fuel , 2016 , 166 : 276 - 296 .
POROSOFF M D , YAN B H , CHEN J G , et al . Catalytic reduction of CO 2 by H 2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities [J ] . Energy & Environmental Science , 2016 , 9 ( 1 ): 62 - 73 .
ÁLVAREZ A , BANSODE A , URAKAWA A , et al . Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO 2 hydrogenation processes [J ] . Chemical Reviews , 2017 , 117 ( 14 ): 9804 - 9838 .
RAN J R , JARONIEC M , QIAO S Z . Cocatalysts in semiconductor-based photocatalytic CO 2 reduction: Achievements, challenges, and opportunities [J ] . Advanced Materials , 2018 , 30 ( 7 ): 1704649 .
GAO W , LI Y W , XIAO D Q , et al . Advances in photothermal conversion of carbon dioxide to solar fuels [J ] . Journal of Energy Chemistry , 2023 , 83 : 62 - 78 .
SONG C Q , WANG Z H , YIN Z , et al . Principles and applications of photothermal catalysis [J ] . Chem Catalysis , 2022 , 2 ( 1 ): 52 - 83 .
GHOUSSOUB M , XIA M , DUCHESNE P N , et al . Principles of photothermal gas-phase heterogeneous CO 2 catalysis [J ] . Energy & Environmental Science , 2019 , 12 ( 4 ): 1122 - 1142 .
XIONG Y , LIU X , HU Y , et al . Ag 24 Au cluster decorated mesoporous Co 3 O 4 for highly selective and efficient photothermal CO 2 hydrogenation [J ] . Nano Research , 2022 , 15 ( 6 ): 4965 - 4972 .
LI Y Z , ZHANG X T . Electrically conductive, optically responsive, and highly orientated Ti 3 C 2 T x MXene aerogel fibers [J ] . Advanced Functional Materials , 2022 , 32 ( 4 ): 2107767 .
KHAN S , DAI X Y , ALI T , et al . Recent advances on photo-thermo-catalysis for carbon dioxide methanation [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 64 ): 24756 - 24787 .
李涛 , 王胜 , 高典楠 , 等 . 制备条件对Ru/Ce 0.8 Zr 0.2 O 2 催化剂上CO 2 甲烷化反应性能的影响 [J ] . 燃料化学学报 , 2014 , 42 ( 12 ): 1440 - 1446 .
LI T , WANG S , GAO D N , et al . Effect of support calcination temperature on the catalytic properties of Ru/Ce 0.8 Zr 0.2 O 2 for methanation of carbon dioxide [J ] . Journal of Fuel Chemistry and Technology , 2014 , 42 ( 12 ): 1440 - 1446 .
SHARIFIAN S , ASASIAN-KOLUR N . Studies on CO x hydrogenation to methane over Rh-based catalysts [J ] . 2020 , 118 : 108021 .
KIM H Y , LEE H M , PARK J N . Bifunctional mechanism of CO 2 methanation on Pd-MgO/SiO 2 catalyst: Independent roles of MgO and Pd on CO 2 methanation [J ] . The Journal of Physical Chemistry C , 2010 , 114 ( 15 ): 7128 - 7131 .
MENG X G , WANG T , LIU L Q , et al . Photothermal conversion of CO 2 into CH 4 with H 2 over Group VIII nanocatalysts: An alternative approach for solar fuel production [J ] . Angewandte Chemie International Edition , 2014 , 53 ( 43 ): 11478 - 11482 .
ZHAI J X , XIA Z H , ZHOU B W , et al . Photo-thermal coupling to enhance CO 2 hydrogenation toward CH 4 over Ru/MnO/Mn 3 O 4 [J ] . Nature Communications , 2024 , 15 ( 1 ): 1109 .
KIRCHNER J , ANOLLECK J K , LOSCH H , et al . Methanation of CO 2 on iron based catalysts [J ] . Applied Catalysis B: Environmental , 2018 , 223 : 47 - 59 .
田菊梅 , 高新华 , 李亚朝 , 等 . CO 2 低温甲烷化Ni基催化剂研究进展 [J ] . 洁净煤技术 , 2024 , 30 ( S2 ): 112 - 122 .
TIAN J M , GAO X H , LI Y C , et al . Recent advances in low temperature CO 2 methanation on Ni-based catalysts [J ] . Clean Coal Technology , 2024 , 30 ( S2 ): 112 - 122 .
GAO J J , LIU Q , GU F N , et al . Recent advances in methanation catalysts for the production of synthetic natural gas [J ] . RSC Advances , 2015 , 5 ( 29 ): 22759 - 22776 .
SONG C Q , LIU J J , WANG R H , et al . Engineering MO x /Ni inverse catalysts for low-temperature CO 2 activation with high methane yields [J ] . Nature Chemical Engineering , 2024 , 1 : 638 - 649 .
ZHU X L , ZONG H B , MIAO H , et al . Supercharged CO 2 photothermal catalytic methanation: High conversion, rate, and selectivity [J ] . Angewandte Chemie International Edition , 2023 , 135 ( 22 ): e202218694 .
KUANG L Q , CHEN Z Z , YAN Y J , et al . Research progress of g-C 3 N 4 -based materials for photothermal-assisted photocatalysis [J ] . International Journal of Hydrogen Energy , 2024 , 87 : 20 - 49 .
WU Z Y , SHEN J H , LI C R , et al . Niche applications of MXene materials in photothermal catalysis [J ] . Chemistry , 2023 , 5 ( 1 ): 492 - 510 .
LI Y Y , WANG C H , SONG M , et al . TiO 2- x /CoO x photocatalyst sparkles in photothermocatalytic reduction of CO 2 with H 2 O steam [J ] . Applied Catalysis B: Environment and Energy , 2019 , 243 : 760 - 770 .
QI M Y , XIAO W Y , CONTE M , et al . Interfacial synergy of Ni single atom/clusters and MXene enabling semiconductor quantum dots based superior photoredox catalysis [J ] . ACS Catalysis , 2025 , 15 ( 1 ): 129 - 138 .
KATTEL S , LIU P , CHEN J G . Tuning selectivity of CO 2 hydrogenation reactions at the metal/oxide interface [J ] . Journal of the American Chemical Society , 2017 , 139 ( 29 ): 9739 - 9754 .
LI H , TANG Y , YAN W X , et al . Vacancy-enhanced photothermal activation for CO 2 methanation on Ni/SrTiO 3 catalysts [J ] . Applied Catalysis B: Environment and Energy , 2024 , 357 : 124346 .
WANG H L , LI Q , CHEN J , et al . Efficient solar-driven CO 2 methanation and hydrogen storage over nickel catalyst derived from metal-organic frameworks with rich oxygen vacancies [J ] . Advanced Science , 2023 , 10 ( 34 ): 2304406 .
ZHANG X B , LIU H J , WANG Y Q , et al . Hot-electron-induced CO 2 hydrogenation on Au@AuRu/g-C 3 N 4 plasmonic bimetal-semiconductor heterostructure [J ] . Chemical Engineering Journal , 2022 , 443 : 136482 .
XI Y Y , CAI M J , WU Z Y , et al . Identification of photochemical effects in Ni-based photothermal catalysts [J ] . Chinese Journal of Structural Chemistry , 2023 , 42 ( 6 ): 100071 .
KANG L L , LIU X Y , WANG A Q , et al . Photo-thermo catalytic oxidation over a TiO 2 -WO 3 -supported platinum catalyst . [J ] . Angewandte Chemie , 2020 , 59 ( 31 ): 12909 - 12916 .
LI Z H , CHEN Y , SUN Y X , et al . Platinum-doped prussian blue nanozymes for multiwavelength bioimaging guided photothermal therapy of tumor and anti-inflammation [J ] . ACS Nano , 2021 , 15 ( 3 ): 5189 - 5200 .
WU Z Y , LI C R , LI Z , et al . Niobium and titanium carbides (MXenes) as superior photothermal supports for CO 2 photocatalysis [J ] . ACS Nano , 2021 , 15 ( 3 ): 5696 - 5705 .
ZHANG W , CHEN Y , ZHANG G , et al . Hot-electron-induced photothermal catalysis for energy-dependent molecular oxygen activation [J ] . Angewandte Chemie , 2021 , 133 ( 9 ): 4922 - 4928 .
ZHU L L , GAO M M , PEH C K N , et al . Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications [J ] . Materials Horizons , 2018 , 5 ( 3 ): 323 - 343 .
ZHANG Q F , UCHAKER E , CANDELARIA S L , et al . Nanomaterials for energy conversion and storage [J ] . Chemical Society Reviews , 2013 , 42 ( 7 ): 3127 - 3171 .
田野 . EG-Ru/TiO 2 -GO催化剂的制备及其光(热)催化分解水制氢性能研究 [D ] . 太原 : 太原理工大学 , 2023 .
TIAN Y . Preparation of EG-Ru/TiO 2 -GO catalyst and i ts photo (thermal) catalytic performance for hydrogen production from water splitting [D ] . Taiyuan : Taiyuan university of technology , 2023 .
LI S W , XU Y , CHEN Y F , et al . Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction [J ] . Angewandte Chemie , 2017 , 129 ( 36 ): 10901 - 10905 .
刘文博 . 氮化碳基光催化剂的合成及其光催化析氢性能研究 [D ] . 吉林 : 吉林大学 , 2023 .
LIU W B . Synthesis of carbon nitride based photocatalysts andstudy on their photocatalytic properties for hydrogen evolution [D ] . Jilin : Jilin University , 2023 .
LI J R , XU Q , HAN Y Y , et al . Efficient photothermal CO 2 methanation over NiFe alloy nanoparticles with enhanced localized surface plasmon resonance effect [J ] . Science China Chemistry , 2023 , 66 ( 12 ): 3518 - 3524 .
LI Q , WANG C Q , WANG H L , et al . Disclosing support-size-dependent effect on ambient light-driven photothermal CO 2 hydrogenation over nickel/titanium dioxide [J ] . Angewandte Chemie International Edition , 2024 , 136 ( 10 ): e202318166 .
郭李娜 , 李睿哲 , 孙闯 , 等 . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al 2 O 3 催化剂光热催化CO 2 甲烷化反应的影响 [J ] . 物理化学学报 , 2025 , 41 ( 1 ): 68 - 78 .
GUO L N , LI R Z , SUN C , et al . Effect of interlayer anions in layered double hydroxides on the photothermocatalytic CO 2 methanation of derived Ni-Al 2 O 3 catalysts [J ] . Acta Physico-Chimica Sinica , 2025 , 41 ( 1 ): 68 - 78 .
LI T , ZHANG Z Y , LUO D C , et al . Highly efficient photo-thermal synergistic catalysis of CO 2 methanation over La 1- x Ce x NiO 3 perovskite-catalyst [J ] . Nano Research , 2024 , 17 ( 9 ): 7945 - 7956 .
彭富昌 , 赖奇 . 钒掺杂SrTiO 3 光催化剂的制备及性能研究 [J ] . 宁夏大学学报(自然科学版) , 2016 , 37 ( 3 ): 328 - 331 .
PENG F C , LAI Q . Study on preparation and properties of SrTiO 3 photocatalyst doped with vanadium [J ] . Journal of Ningxia University (Natural Science Edition) , 2016 , 37 ( 3 ): 328 - 331 .
ZHAO S H , LUO Y D , LI C H , et al . High-performance photothermal catalytic CO 2 reduction to CH 4 and CO by ABO 3 (A = La, Ce; B = Ni, Co, Fe) perovskite nanomaterials [J ] . Ceramics International , 2023 , 49 ( 12 ): 20907 - 20919 .
ZHOU Y , ZHENG P , WANG F , et al . NiO@Ni nanoparticles embedded in N-doped carbon for efficient photothermal CO 2 methanation coupled with H 2 O splitting [J ] . Nano Research , 2024 , 17 ( 4 ): 2283 - 2290 .
YU X W , DING X , YAO Y F , et al . Layered high-entropy metallic glasses for photothermal CO 2 methanation [J ] . Advanced Materials , 2024 , 36 ( 21 ): 2312942 .
LI P , ZHANG S L , XIAO Z R , et al . Ni-TiO 2 catalysts derived from metal-organic framework for efficient photo-thermal CO 2 methanation [J ] . Fuel , 2024 , 357 : 129817 .
LI Q , GAO Y X , ZHANG M , et al . Efficient infrared-light-driven photothermal CO 2 reduction over MOF-derived defective Ni/TiO 2 [J ] . Applied Catalysis B: Environmental , 2022 , 303 : 120905 .
RAZIQ F , FENG C Y , HU M , et al . Isolated Ni atoms enable near-unity CH 4 selectivity for photothermal CO 2 hydrogenation [J ] . Journal of the American Chemical Society , 2024 , 146 ( 30 ): 21008 - 21016 .
LI Y G , HAO J C , SONG H , et al . Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO 2 methanation [J ] . Nature Communications , 2019 , 10 ( 1 ): 2359 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构