浏览全部资源
扫码关注微信
1.成都信息工程大学 资源环境学院,四川 成都 610225
2.中国石油天然气股份有限公司石油化工研究院 大庆化工研究中心,黑龙江 大庆 163710
唐文强(2003—),硕士研究生,研究方向为生物质制氢、C1转化与利用,E-mail:18383865349@163.com。
刘晨龙(1992—),博士,副教授,研究方向为生物质制氢、C1转化与利用,E-mail: liucl1992@qq.com。
收稿日期:2024-12-26,
修回日期:2025-03-14,
网络出版日期:2025-06-09,
移动端阅览
唐文强,刘晨龙,杨薪颖等.甲烷裂解制多壁碳纳米管的Ni基催化剂研究进展[J].低碳化学与化工,
TANG Wenqiang,LIU Chenlong,YANG Xinying,et al.Research progress on Ni-based catalysts for methane cracking to multi-walled carbon nanotubes[J].Low-Carbon Chemistry and Chemical Engineering,
唐文强,刘晨龙,杨薪颖等.甲烷裂解制多壁碳纳米管的Ni基催化剂研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240514.
TANG Wenqiang,LIU Chenlong,YANG Xinying,et al.Research progress on Ni-based catalysts for methane cracking to multi-walled carbon nanotubes[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240514.
碳纳米管是一种由层状石墨卷曲形成的独特管状纳米材料,具备机械强度高、导电性优异、生物相容性良好、化学性能稳定和比表面积较大等优点,被广泛应用于众多领域。化学气相沉积法(CVD)是合成碳纳米管的关键技术之一,凭借其可控性和高产率的优点,成为大规模合成高性能碳纳米管的主流技术。Ni基催化剂因具有高催化活性和产物选择性,被广泛用于催化甲烷裂解。对Ni基催化剂催化甲烷裂解下的多壁碳纳米管(MWCNTs)生长机理以及不同类型Ni基催化剂对MWCNTs结构的调控进行了总结,并进一步对Ni基催化剂催化甲烷裂解可控生长MWCNTs进行了展望,以期为甲烷裂解制备MWCNTs的相关研究提供方向指引。
Carbon nanotubes are tubular nanomaterials formed by the coiling of layered graphite
which are widely used in many fields because of high mechanical strength
excellent conductivity
good biocompatibility
stable chemical property and large specific surface area. Chemical vapor deposition (CVD) method is one of the key technologies for the synthesis of carbon nanotubes
and has become the mainstream technology for large-scale synthesis of high-performance carbon nanotubes due to its controllability and high yield. Ni-based catalysts are widely used for methane cracking due to their high catalytic activity and product selectivity. The growth mechanisms of multi-walled carbon nanotubes (MWCNTs) catalyzed by Ni-based catalysts for methane cracking and the regulation of MWCNTs structures by different types of Ni-based catalysts were summarized. Furthermore
the controllable growth of MWCNTs catalyzed by Ni-based catalysts for methane cracking was prospected
in order to provide guidance for the relevant research on methane cracking to prepare MWCNTs.
WU L , LIU J , REEDDY B R , et al . Preparation of coal-based carbon nanotubes using catalytical pyrolysis: A brief review [J ] . Fuel Processing Technology , 2022 , 229 : 107171 .
EL-KHATIB A M , BONDOUK I I , OMAR K M , et al . Impact of changing electrodes dimensions and different ACs on the characteristics of nano composites NZnO/MWCNTs prepared by the arc discharge method [J ] . Surfaces and Interfaces , 2022 , 29 : 101736 .
王莉萍 , 王彬 , 李光石 , 等 . 脉冲激光制备纳米材料研究进展 [J ] . 激光与光电子学进展 , 2021 , 58 ( 9 ): 104 - 115 .
WANG L P , WANG B , LI G S , et al . Nanomaterials prepared via pulsed laser processes [J ] . Laser & Optoelectronics Progress , 2021 , 58 ( 9 ): 104 - 115 .
葛菊芳 , 黄海军 , 黄先锋 , 等 . CVD法制备多壁碳纳米管的研究进展 [J ] . 信息记录材料 , 2023 , 24 ( 10 ): 25 - 27 .
GE J F , HUANG H J , HUANG X F , et al . Progress in preparation of multi-walled carbon nanotubes by CVD method [J ] . Information Recording Materials , 2023 , 24 ( 10 ): 25 - 27 .
MSHEIK M , RODAT S , ABANADES S , et al . Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis [J ] . Energies , 2021 , 14 ( 11 ): 3107 .
OLIVIER-BOURBIGOU H , BREUIL P A R , MAGAN L , et al . Nickel catalyzed olefin oligomerization and dimerization [J ] . Chemical Reviews , 2020 , 120 ( 15 ): 7919 - 7983
张迎晓 , 周帆 , 赖陈 , 等 . 碳纳米管材料的制备及其应用研究进展 [J ] . 稀有金属材料与工程 , 2024 , 53 ( 6 ): 1781 - 1796 .
ZHANG Y X , ZHOU F , LAI C , et al . Research progress on the preparation and application of carbon nanotubes [J ] . Rare Metal Materials and Engineering , 2024 , 53 ( 6 ): 1781 - 1796 .
ALI I , ALGARNI T S , BURAKOVA E , et al . A new approach to the economic synthesis of multi-walled carbon nanotubes using a Ni/MgO catalyst [J ] . Materials Chemistry and Physics , 2021 , 261 : 124234 - 124234 .
SALIPIRA K , COVILLE J , SCURRELL M S . Carbon produced by the catalytic decomposition of methane on nickel: Carbon yields and carbon structure as a function of catalyst properties [J ] . Journal of Natural Gas Science and Engineering , 2016 , 32 : 501 - 511 .
HE M S , MAGNIN Y , AMARA H , et al . Linking growth mode to lengths of single-walled carbon nanotubes [J ] . Carbon , 2017 , 113 : 231 - 236 .
CHWN X L , PANG X , FAUTEUX-LEFEBVRE C , et al . The base versus tip growth mode of carbon nanotubes by catalytic hydrocarbon cracking: Review, challenges and opportunities [J ] . Carbon Trends , 2023 , 12 : 100273 .
WU X Y , XU L L , CHEN M D , et al . Recent progresses in the design and fabrication of highly efficient Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CO 2 reforming of methane [J ] . Frontiers in Chemistry , 2020 , 8 : 581923 .
姚律 , 杨晓瑞 , 王倩倩 , 等 . 甲烷催化裂解制氢及碳纳米管的研究进展 [J ] . 现代化工 , 2017 , 37 ( 5 ): 25 - 29 .
YAO L , YANG X R , WANG Q Q , et al . Study progress on methane catalytic cracking to hydrogen and carbon nanotubes [J ] . Modern Chemical Industry , 2017 , 37 ( 5 ): 25 - 29 .
QIAN J X , CHEN T W , ENAKONDA L R , et al . Methane decomposition to produce CO x -free hydrogen and nano-carbon over metal catalysts: A review [J ] . International Jouran of Hydrogen Energy , 2020 , 45 ( 15 ): 7981 - 8001 .
GAO X Y , ASHOK J , KAWI S . Smart designs of anti-coking and anti-sintering Ni-based catalysts for dry reforming of methane: A recent review [J ] . Reactions , 2020 , 1 ( 2 ): 162 - 194 .
HUANG L A , LI D Y , TIAN D , et al . Optimization of Ni-based catalysts for dry reforming of methane via alloy design: A review [J ] . Eenergy & Fuels , 2022 , 36 ( 10 ): 5102 - 5151 .
MEHRABI M , PARVIN P , REYHANI A , et al . Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage [J ] . International Journal of Hydrogen Eenergy , 2018 , 43 ( 27 ): 12211 - 12221 .
TAMUR K , KOKURYO S , KITAMURA H , et al . Cr-promoted Ni catalyst on dealuminated zeolite for producing hydrogen via catalytic decomposition of methane [J ] . Industrial & Engineering Chemistry Research , 2024 , 63 ( 45 ): 19449 - 19456 .
SIKANDER U , SAMSUDIN M F , SUFIAN S , et al . Tailored hydrotalcite-based Mg-Ni-Al catalyst for hydrogen production via methane decomposition: Effect of nickel concentration and spinel-like structures [J ] . International Journal of Hydrogen Energy , 2019 , 44 ( 28 ): 14424 - 14433
LIANG W , YAN H , CHEN C , et al . Revealing the effect of nickel particle size on carbon formation type in the methane decomposition reaction [J ] . Catalysts , 2020 , 10 ( 8 ): 890 .
LI Z , JI S F , LIU Y W , et al . Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites [J ] . Chemical Reviews , 2020 , 120 ( 2 ): 623 - 682 .
张尚强 , 南军 , 张景成 , 等 . 300 kg/a规模流化床制碳纳米管中试研究 [J ] . 无机盐工业 , 2019 , 51 ( 11 ): 69 - 72 .
ZHANG S Q , NAN J , ZHANG J C , et al . Pilot study on the production of carbon nanotubes from 300 kg/a fluidized bed [J ] . Inorganic Chemicals Industry , 2019 , 51 ( 11 ): 69 - 72 .
裴婷 , 张妮娜 , 王姗姗 , 等 . 甲烷催化裂解制氢生成碳纳米管影响因素探讨 [J ] . 应用化工 , 2022 , 51 ( 3 ): 747 - 750 .
PEI T , ZHANG N N , WANG S S , et al . Discussion on the influencing factors of hydrogen production from methane catalytic cracking to carbon nanotubes [J ] . Applied Chemical Industry , 2022 , 51 ( 3 ): 747 - 750 .
彭冲 , 刘鹏 , 胡永康 , 等 . 低温等离子体构筑高效Ni基催化剂进展 [J ] . 化工进展 , 2021 , 40 ( 7 ): 3553 - 3563 .
PENG C , LIU P , HU Y K , et al . Recent progress in fabricating efficient Ni-based catalysts by cold plasma [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 7 ): 3553 - 3563 .
ABDEL-FATAH M A . Optimization of nickel catalyst loading in Ni/ γ Al 2 O 3 for producing carbon nanotubes through natural gas decomposition [J ] . Chemical Papers , 2023 , 77 ( 7 ): 3747 - 3758 .
CAO M J , LI S D , WANG S K , et al . Highly stable hydrotalcite-derived NiCrAl catalyst for methane cracking and directly application for electromagnetic wave absorption [J ] . Fuel , 2025 , 379 : 133128 .
AHMED H A , AWADALLAH A E , ABOUL-ENEIN A A , et , al . Non-oxidative decomposition of CH 4 over CeO 2 and CeO 2 -SiO 2 su pported bimetallic Ni-Mo catalysts [J ] . Catalysis Letters , 2022 , 152 ( 9 ): 2789 - 2800 .
CHOI J B , IM J S , KANG S C , et al . Effect of metal-support interaction in Ni/SiO 2 catalysts on the growth of carbon nanotubes by methane decomposition [J ] . Carbon Letters , 2023 , 33 : 477 - 488
PUDUKUDY M , YAAKOB Z , MAZUKI M Z , et , al . One-pot sol-gel synthesis of MgO nanoparticles supported nickel and iron catalysts for undiluted methane decomposition into CO x free hydrogen and nanocarbon [J ] . Applied Catalysis B: Environmental , 2017 , 218 : 298 - 316 .
TANG S N , SACONSINT S , SRIFA A , et al . Simultaneous production of syngas and carbon nanotubes from CO 2 /CH 4 mixture over high-performance NiMo/MgO catalyst [J ] . Scientific Reports , 2024 , 14 ( 1 ): 16282 .
GYTTA N , VELISOJU V K , TARDIO J , et al . CH 4 cracking over the Cu-Ni/Al-MCM-41 catalyst for the simultaneous production of H 2 and highly ordered graphitic carbon nanofibers [J ] . Energy & Fuels , 2019 , 33 ( 12 ): 12656 - 12665 .
孙华阳 , 任申勇 , 刘璐 , 等 . IM-5分子筛在Ni-Cu催化剂甲烷热裂解制氢反应中的作用研究 [J ] . 分子催化 , 2023 , 37 ( 3 ): 252 - 263 .
SUN H Y , REN S Y , LIU L , et al . Effect of IM-5 on the methane decomposition to produce hydrogen over Ni-Cu bimetallic catalyst [J ] . Journal of Molecular Catalysis (China) , 2023 , 37 ( 3 ): 252 - 263 .
CAZANA F , AFAILAL Z , GONZALEZ-MARTIN M , et al . Hydrogen and CNT production by methane cracking using Ni-Cu and Co-Cu catalysts supported on argan-derived carbon [J ] . ChemEngineering , 2022 , 6 ( 4 ): 47 .
YUAN J C , WANG Y , TANG M F , et al . Effect of the pore structure of coal-based activated carbon and hydrogen addition on methane decomposition for the preparation of carbon nanotubes [J ] . Vacuum , 2023 , 207 : 111584 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构