浏览全部资源
扫码关注微信
1.常州大学 城乡矿山研究院 常州市生物质绿色安全高值利用技术重点实验室,江苏 常州 213164
2.河南工业大学 环境工程学院 碳中和研究院,河南 郑州 450001
3.维尔利环保科技集团股份有限公司,江苏 常州 213125
何聂燕(1998—),硕士研究生,研究方向为生物质及副产物利用,E-mail:2438400586@qq.com。
雷廷宙(1963—),博士,研究员,研究方向为生物质能源与材料,E-mail:China_newenergy@163.com。
收稿日期:2024-12-25,
修回日期:2024-03-13,
网络出版日期:2025-05-13,
移动端阅览
何聂燕,李学琴,刘鹏等.载体对负载型镍基催化剂二氧化碳-甲烷重整制合成气性能的影响[J].低碳化学与化工,
HE Nieyan,LI Xueqin,LIU Peng,et al.Effects of supports on performances of supported nickel-based catalysts for carbon dioxide-methane reforming to syngas[J].Low-Carbon Chemistry and Chemical Engineering,
何聂燕,李学琴,刘鹏等.载体对负载型镍基催化剂二氧化碳-甲烷重整制合成气性能的影响[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240513.
HE Nieyan,LI Xueqin,LIU Peng,et al.Effects of supports on performances of supported nickel-based catalysts for carbon dioxide-methane reforming to syngas[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240513.
二氧化碳(CO
2
)和甲烷(CH
4
)是导致全球变暖的主要温室气体。CO
2
与CH
4
干重整(DRM)制合成气是解决该问题的可行方案之一,但该反应催化剂易因积炭和金属烧结而失活。以活性炭(AC)、HZMS-5和炼铝灰渣为载体,采用超声浸渍法制备了镍质量分数为6%的催化剂6NiO/AC、6NiO/HZSM-5和6NiO/SA。采用固定床反应装置研究了该系列催化剂对DRM反应的催化性能,并通过XRD、N
2
吸/脱附、TG和SEM对催化剂进行了表征。结果表明,3种催化剂中,6NiO/SA的催化活性最低,6NiO/AC具有最大的比表面积和较小的金属晶粒,表现出比6NiO/HZSM-5和6NiO/SA更佳的催化活性,在
n
(CO
2
)/
n
(CH
4
)为1,温度为900 ℃时反应60 min,6NiO/AC的CH
4
转化率和CO
2
转化率分别为91.4%和93.4%。在
n
(CO
2
)/
n
(CH
4
)为1,温度为800 ℃,反应时间为240 min条件下考察了6NiO/AC的稳定性,发现其CH
4
转化率始终保持在70%左右。反应后6NiO/AC的积炭种类主要为丝状积炭,保证了催化剂的活性位点。另外,在反应体系中引入过量的CO
2
可使反应正向进行,促进了积炭气化反应并抑制了积炭形成。
Carbon dioxide (CO
2
) and methane (CH
4
) emissions are the main greenhouse gases that cause global warming. Dry reforming (DRM) of CO
2
and CH
4
to syngas is one of the feasible solutions to this problem
but the catalyst is easily deactivated due to carbon deposition and metal sintering. Catalysts 6NiO/AC
6NiO/HZSM-5 and 6NiO/SA with nickel mass fraction of 6% were prepared by ultrasonic impregnation method using activated carbon (AC)
HZ
MS-5 and aluminum slag as carriers. The catalytic performance of these catalysts for DRM reaction was studied in a fixed bed reactor
and the catalysts were characterized by XRD
N
2
adsorption/desorption
TG and SEM. The results show that the catalytic activity of 6NiO/SA is the lowest among the three catalysts. 6NiO/AC has the largest specific surface area and smaller metal grains
showing better catalytic activity than 6NiO/HZSM-5 and 6NiO/SA.At the
n
(CO
2
)/
n
(CH
4
) of 1
the temperature of 900 ℃ and the reaction time of 60 min
the CH
4
conversion rate and CO
2
conversion rate were 91.4% and 93.4%
respectively. The stability of 6NiO/AC was investigated under the conditions of
n
(CO
2
)/
n
(CH
4
) of 1
temperature of 800 ℃ and reaction time of 240 min. It was found that the CH
4
conversion rate was always maintained at about 70 %. After the reaction
the carbon deposition type of 6NiO/AC is mainly filamentous carbon deposition
which ensures the active site of the catalyst. In addition
the introduction of excessive CO
2
in the reaction system can make the reaction go forward
promote the carbon deposition gasification reaction and inhibit the carbon formation.
SHAMSUDDIN M R , MANSIR N , ANUAR A , et al . Insight into CO 2 reforming of CH 4 via NiO/dolomite catalysts for production of H 2 rich syngas [J ] . International Journal of Energy Research , 2021 , 45 ( 10 ): 15463 - 15480 .
YU Y X , YANG J , ZHU K K , et al . High-throughput screening of alloy catalysts for dry methane reforming [J ] . ACS Catalysis , 2021 , 11 ( 14 ): 8881 - 8894 .
LUSTEMBERG P G , MAO Z T , SALCEDO A , et al . Nature of the active sites on Ni/CeO 2 catalysts for methane conversions [J ] . ACS Catalysis , 2021 , 11 ( 16 ): 10604 - 10613 .
卢晶军 . 高稳定性Ni/CeO 2 -Al 2 O 3 甲烷干重整催化剂的合成及其性能研究 [D ] . 太原 : 太原理工大学 , 2020 .
LU J J . Synthesis and performance of highly stable Ni/CeO 2 -Al 2 O 3 catalyst for methane dry reforming [D ] . Taiyuan : Taiyuan University of Technology , 2020 .
ALHASSAN A M , HUSSAIN I , TAIALLA O A , et al . Advances in catalytic dry reforming of methane (DRM): Emerging trends, current challenges, and future perspectives [J ] . Journal of Cleaner Production , 2023 , 423 : 138638 .
FANG X Z , ZHANG J , LIU J J , et al . Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides [J ] . Journal of CO 2 Utilization , 2018 , 25 : 242 - 253 .
HUSSAIN I , JALIL A A , HASSAN N S , et al . Recent advances in catalytic systems for CO 2 conversion to substitute natural gas (SNG): Perspective and challenges [J ] . Journal of Energy Chemistry , 2021 , 62 ( 11 ): 377 - 407 .
AWAD M M , HUSSAIN I , GANIYU S A , et al . Highly dispersed nickel-tuned silica lanthana catalyst: Interplay of morphology and textural properties for hydrogen-rich syngas through the carbon dioxide reforming of methane [J ] . Journal of the Energy Institute , 2024 , 114 : 101650 .
SHENG K F , CUI K . Highly dispersed Ni nanoparticles supported by porous Al 2 O 3 rods for catalytic dry reforming of methane [J ] . New Journal of Chemistry , 2023 , 47 ( 32 ): 15226 - 15235 .
郑家乐 , 毕亚东 , 熊娇君 , 等 . 双金属Ni-Co/HZSM-5催化剂上甲烷二氧化碳重整反应 [J ] . 工业催化 , 2018 , 26 ( 9 ): 46 - 50 .
ZHENG J L , BI Y D , XIONG J J , et al . Dry reforming of methane on bimetallic Ni-Co/HZSM-5 catalyst [J ] . Industrial Catalysis , 2018 , 26 ( 9 ): 46 - 50 .
MURADOV N , CHEN Z , SMITH F . Fossil hydrogen with reduced CO 2 emission: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles [J ] . International Journal of Hydrogen Energy , 2005 , 30 ( 10 ): 1149 - 1158 .
MOLINER R , SUELVES I , LAZARO M J , et al . Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry [J ] . International Journal of Hydrogen Energy , 2005 , 30 ( 3 ): 293 - 300 .
郭硕闻 , 孙映晖 , 李媖 , 等 . 炭材料在CH 4 -CO 2 重整反应中的研究进展 [J ] . 洁净煤技术 , 2022 , 28 ( 12 ): 41 - 50 .
GUO S W , SUN Y H , LI Y , et al . Research progress of carbon materials in CH 4 -CO 2 reforming [J ] . Clean Coal Technology , 2022 , 28 ( 12 ): 41 - 50 .
TORRES-SEMPERE G , PASTOR-PEREZ L , ODRIOZOLA J A , et al . Recent advances on gas-phase CO 2 conversion: Catalysis design and chemical processes to close the carbon cycle [J ] . Current Opinion in Green and Sustainable Chemistry , 2022 , 36 : 100647 .
WANG H Q , HAN J , ZHAO B , et al . Non-thermal plasma enhanced dry reforming of CH 4 with CO 2 over activated carbon supported Ni catalysts [J ] . Molecular Catalysis , 2019 , 475 : 110486 .
MATOS J , LAINE J , et al . Ethylene conversion on activated carbon-supported NiMo catalysts: Effect of the support [J ] . Applied Catalysis A: General , 2003 , 241 ( 1/2 ): 25 - 38 .
张荣俊 , 夏国富 , 李明丰 , 等 . 载体类型对Ni基催化剂甲烷干重整反应性能的影响 [J ] . 燃料化学学报 , 2015 , 43 ( 11 ): 1359 - 1365 .
ZHANG R , XIA G , LI M , et al . Effect of support on catalytic performance of Ni-based catayst in methane dry reforming [J ] . Journal of Fuel Chemistry and Technology , 2015 , 43 ( 11 ): 1359 - 1365 .
AKRI M , ZHAO S , LI X Y , et al . Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J ] . Nature Communications , 2019 , 10 ( 1 ): 5181 .
NIU J T , WANG Y L , LILAND S E , et al . Unraveling enhanced activity, selectivity, and coke resistance of Pt-Ni bimetallic clusters in dry reforming [J ] . ACS Catalysis , 2021 , 11 ( 4 ): 2398 - 2411 .
AHN S , LITTLEWOOD P , LIU Y Q . Stabilizing supported Ni catalysts for dry reforming of methane by combined La doping and Al overcoating using atomic layer deposition [J ] . ACS Catalysis , 2022 , 12 ( 17 ): 10522 - 10530 .
HASNAIN S M W U , FAROOQI A S , AYODELE B V , et al . Advancements in Ni and Co-based catalysts for sustainable syngas production via bi-reforming of methane: A review of recent advances [J ] . Journal of Cleaner Production , 2024 , 434 : 139904 .
WANG N , CHU W , ZHANG T , et al . Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas [J ] . International Journal of Hydrogen Energy , 2012 , 37 ( 1 ): 19 - 30 .
CHEIN R Y , HSU W H , YU C T . Parametric study of catalytic dry reforming of methane for syngas production at elevated pressures [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 21 ): 14485 - 14500 .
HUSSAIN I , JALIL A A , IZAN S M , et al . Thermodynamic and experimental explorations of CO 2 methanation over highly active metal-free fibrous silica-beta zeolite (FS@SiO 2 -BEA) of innovative morphology [J ] . Chemical Engineering Science , 2021 , 229 : 116015 .
RAMIREZ A , LEE K , HARALE A , et al . Stable High-pressure methane dry reforming under excess of CO 2 [J ] . ChemCatChem , 2020 , 12 ( 23 ): 5919 - 5925 .
张露明 . 氧化镁负载镍甲烷二氧化碳重整催化剂的制备、表征及其催化性能研究 [D ] . 武汉 : 中南民族大学 , 2013 .
ZHANG L M . Preparation, characterization and catalytic performance of nickel-based catalysts supported on MgO for carbon dioxide reforming of methane [D ] . Wuhan : South-Central Minzu University , 2013 .
BAI Z Q , CHEN H K , LI B Q , et al . Catalytic decomposition of methane over activated carbon [J ] . Journal of Analytical and Applied Pyrolysis , 2005 , 73 ( 2 ): 335 - 341 .
SONG Q L , XIAO R , LI Y B , et al . Catalytic carbon dioxide reforming of methane to synthesis gas over activated carbon catalyst [J ] . Industrial & Engineering Chemistry Research , 2008 , 47 ( 13 ): 4349 - 4357 .
苏爱廷 , 张国杰 , 屈江文 , 等 . Co-Ni-ZrO 2 /活性炭催化CH 4 -CO 2 重整性能研究 [J ] . 天然气化工—C1化学与化工 , 2016 , 41 ( 3 ): 24 - 29 .
SU A T , ZHANG G J , QU J W , et al . Carbon dioxide reforming of methane over Co-Ni-ZrO 2 /AC catalyst [J ] . Natural Gas Chemical Industry , 2016 , 41 ( 3 ): 24 - 29 .
屈江文 , 张国杰 , 苏爱廷 . CH 4 -CO 2 催化重整制合成气Co-MgO/活性炭催化剂的制备及性能 [J ] . 现代化工 , 2015 , 35 ( 8 ): 124 - 128 .
QU J W , ZHANG G J , SU A T . Preparation and performance of Co-MgO/activated carbon catalyst for CO 2 reforming of CH 4 to produce syngas [J ] . Modern Chemical Industry , 2015 , 35 ( 8 ): 124 - 128 .
ARORA S , PRASAD R . An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts [J ] . RSC Advances , 2016 , 6 ( 110 ): 108668 - 108688 .
LEI T Y , MAO J T , LIU X C , et al . Carbon deposition and permeation on nickel surfaces in operando conditions: A theoretical study [J ] . The Journal of Physical Chemistry C , 2021 , 125 ( 13 ): 7166 - 7177 .
FAN C , ZHU Y A , YANG M L , et al . Density functional theory-assisted microkinetic analysis of methane dry reforming on Ni catalyst [J ] . Industrial & Engineering Chemistry Research , 2015 , 54 ( 22 ): 5901 - 5913 .
钱慧琳 , 冉金玲 , 何安帮 , 等 . 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 55 - 61 .
QIAN H L , RAN J L , HE A B , et al . Thermodynamic analysis of carbon dioxide-methane dry reforming and its carbon deposition control [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 55 - 61 .
WU J W , GAO J , LIAN S S , et al . Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C—H activation [J ] . Applied Catalysis B: Environmental , 2022 , 314 : 121516 .
苏通明 , 王传棽 , 宫博 , 等 . 甲烷干重整Ni基催化剂上积碳调控的研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 1 - 10 .
SU T M , WANG C S , GONG B , et al . Research progress in regulation of carbon deposits on Ni-based catalysts for dry reforming of methane [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 1 - 10 .
CHEN S Y , ZAFFRAN J , YANG B . Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation [J ] . Applied Catalysis B: Environmental , 2020 , 270 : 118859 .
JIANG H T , HUA W , JI J B . Study of coke deposition on Ni catalysts for methane reforming to syngas [J ] . Progress in Chemistry , 2013 , 25 ( 5 ): 859 - 868 .
莫文龙 , 马凤云 , 郝世豪 , 等 . 介孔Al 2 O 3 的制备及其在CO 2 -CH 4 重整镍基催化剂中的应用研究 [J ] . 天然气化工—C1化学与化工 , 2014 , 39 ( 5 ): 16 - 21 .
MO W L , MA F Y , HAO S H , et al . Prepa ration of ordered mesoporous Al 2 O 3 and its application in Ni-based catalysts for CH 4 /CO 2 reforming [J ] . Natural Gas Chemical Industry , 2014 , 39 ( 5 ): 16 - 21 .
胡雅琴 , 吕永康 , 王芳 . 助剂MgO对甲烷二氧化碳重整Co/BaTiO 3 催化剂催化性能的影响 [J ] . 现代化工 , 2011 , 31 ( 7 ): 56 - 58+60 .
HU Y Q , LU Y K , WANG F . Effects of MgO properties of Co-based catalyst for carbon dioxide reforming of methane [J ] . Modern Chemical Industry , 2011 , 31 ( 7 ): 56 - 58+60 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构