浏览全部资源
扫码关注微信
1.安徽大学 化学化工学院,安徽 合肥 230601
2.中国科学院 山西煤炭化学研究所,山西 太原 030001
3.中科合成油技术股份有限公司 国家能源煤基液体燃料研发中心,北京 101407
瞿凡(1999—),硕士研究生,研究方向为多相催化,E-mail:qf88882022@163.com。
常强(1989—),博士,高级工程师,研究方向为多相催化,E-mail:changqiang12@mails.ucas.ac.cn;
张成华(1975—),博士,教授级高级工程师,研究方向为多相催化,E-mail:zhangchh@sxicc.ac.cn。
收稿日期:2024-12-13,
修回日期:2025-01-12,
网络出版日期:2025-03-07,
移动端阅览
瞿凡,殷富,魏宇学等.制备方法对CuZnAl-ZrO2双功能催化剂合成气制C4烃类性能的影响[J].低碳化学与化工,
QU Fan,YIN Fu,WEI Yuxue,et al.Influences of preparation methods on performances of CuZnAl-ZrO2 bifunctional catalysts for production of C4 hydrocarbons from syngas[J].Low-carbon Chemistry and Chemical Engineering,
瞿凡,殷富,魏宇学等.制备方法对CuZnAl-ZrO2双功能催化剂合成气制C4烃类性能的影响[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240492.
QU Fan,YIN Fu,WEI Yuxue,et al.Influences of preparation methods on performances of CuZnAl-ZrO2 bifunctional catalysts for production of C4 hydrocarbons from syngas[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240492.
异构合成是由合成气(CO + H
2
)直接合成异丁烯和异丁烷的反应,目前该反应主要使用ZrO
2
基催化剂,但反应条件普遍较为苛刻,并且催化剂的CO转化率和C
4
烃类选择性均较低。为了解决单一ZrO
2
活化CO生成C1物种性能较弱的问题,对CuZnAl催化剂与ZrO
2
耦合形成的双功能催化剂进行了研究。分别以共沉淀法、浸渍法和物理混合法制备了双功能催化剂,并对其织构性质、氧化物质量分数和晶相结构等进行了表征。在合成气组成为
n
(CO):
n
(H
2
) = 1:1、温度为260 °C、压力为2 MPa和空速为6000 mL/(g·h)的条件下反应72 h评价了催化剂生成C
4
烃类的性能。结果表明,浸渍法所得CZA-ZrO
2
(im)的表面ZrO
2
与CuZnAl产生了强相互作用且表面酸碱性适宜,有利于在CuZnAl上生成CH
3
O*等物种,并在ZrO
2
作用下生成C
4
烃类异构体。CZA-ZrO
2
(im)的CO转化率、C
4
烃类选择性和C
4
烃类异构体在C
4
烃类中的占比分别为5.9%、15.1%和79.7%。
Heterogeneous synthesis is the reaction for direct synthesis of isobutene and isobutane from syngas (CO + H
2
). Currently
the reaction is performed using ZrO
2
-based catalysts
but the reaction conditions are generally harsh and the catalysts have low CO conversion rate and C
4
hydrocarbon selectivity. In order to solve the problem of weak performance of CO
activation to generate C1 species of single ZrO
2
the bifunctional catalysts formed by coupling CuZnAl catalyst with ZrO
2
was investigated. The bifunctional catalysts were prepared by co-precipitation
impregnation and physical mixing methods
respectively
and their texture properties
oxide mass fractions and crystalline phase structures were characterized. The performances of catalysts for production of C
4
hydrocarbons were evaluated under syngas composition of
n
(CO):
n
(H
2
) = 1:1
temperature of 260 °C
pressure of 2 MPa and air velocity of 6000 mL/(g·h) for 72 h. The results show that the surface ZrO
2
of CZA-ZrO
2
(im) obtained by impregnation method produced strong interaction with CuZnAl
and the surface of CZA-ZrO
2
(im) has suitable acidity and alkalinity
which were favorable for generation of CH
3
O* species on CuZnAl
and generation C
4
hydrocarbon isomers under the action of ZrO
2
. The CO conversion rate
C
4
hydrocarbon selectivity and the proportion of C
4
hydrocarbon isomers in C
4
hydrocarbons are 5.9%
15.1% and 79.7%
respectively.
CHEN Y P , WEI J T , DUYAR M S , et al . Carbon-based catalysts for Fischer-Tropsch synthesis [J ] . Chemical Society Reviews , 2021 , 50 ( 4 ): 2337 - 2366 .
徐振刚 , 陈亚飞 . 我国煤化工的技术现状与发展对策 [J ] . 煤炭科学技术 , 2007 , 35 ( 8 ): 6 - 12 .
XU Z G , CHEN Y F . Present status of coal chemical technology in China and development countermeasures [J ] . Coal Science Technology , 2007 , 35 ( 8 ): 6 - 12 .
JIAO J Q , LIU C Q , ZHANG G H , et al . Advances in catalysts for the one-step preparation of aromatics by bifunctional catalytic route from syngas [J ] . Fuel , 2025 , 385 : 134118 .
MUNDER B , RIHKO-STRUCKMANN L , SUNDMACHER K . Steady-state and forced-periodic operation of solid electrolyte membrane reactors for selective oxidation of n -butane to maleic anhydride [J ] . Chemical Engineering Science , 2007 , 62 ( 18/19/20 ): 5663 - 5668 .
ZHANG T , LI X , SUN J C , et al . One-step synthesis of 1,4-butanediol from maleic anhydride by gas-phase selective hydrogenation over x Re/CuZnZr catalysts [J ] . Journal of Catalysis , 2024 , 433 : 115469 .
MAGAJI S , HUSSAIN I , MALAIBARI Z , et al . Catalytic cracking of liquefied petroleum gas (LPG) to light olefins using zeolite-based materials: Recent advances, trends, challenges and future perspectives [J ] . The Chemical Record , 2024 , 24 ( 11 ): e202400110 .
WANG P , CHIANG F K , CHAI J C , et al . Efficient conversion of syngas to linear α -olefins by phase-pure χ -Fe 5 C 2 [J ] . Nature , 2024 , 635 ( 8037 ): 102 - 107 .
王野 , 康金灿 , 张庆红 . 费托合成催化剂的研究进展 [J ] . 石油化工 , 2009 , 38 ( 12 ): 1255 - 1263 .
WANG Y , KANG J C , ZHANG Q H . Research advances in catalysts for Fischer-Tropsch synthesis [J ] . Petrochemical Technology , 2009 , 38 ( 12 ): 1255 - 1263 .
MARUYA K I , KOMIYA T W S , HAYAKAWA T , et al . Active sites on ZrO 2 for the formation of isobutene from CO and H 2 [J ] . Journal of Molecular Catalysis A—Chemical , 2000 , 159 : 97 - 102 .
LU L H , HAYAKAWA T , UEDA T , et al . Dependence of catalytic activity in CO hydrogenation on strong basic sites of ZrO 2 surface [J ] . Chemistry Letters , 1998 ( 1998 ): 65 - 66 .
MÜLLER M , KUTSCHERAUER M , BÖCKLEIN S , et al . On the importance of by-products in the kinetics of n -butane oxidation to maleic anhydride [J ] . Chemical Engineering Journal , 2020 , 401 : 126016 .
KIM D , YUN H , KIM J , et al . Enhanced C—C coupling of Cu-based catalysts via zirconia-driven carbonate interaction for electrochemical CO 2 reduction reaction [J ] . Journal of Materials Chemistry A , 2024 , 12 ( 35 ): 23780 - 23788 .
ZHANG C H , YANG Y , TENG B T , et al . Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper [J ] . Journal of Catalysis , 2006 , 237 ( 2 ): 405 - 415 .
CHENG S Y , KOU J W , GAO Z H , et al . Preparation of complexant-modified Cu/ZnO/Al 2 O 3 catalysts via hydrotalcite-like precursors and its highly efficient application in direct synthesis of isobutanol and ethanol from syngas [J ] . Applied Catalysis A: General , 2018 , 556 : 113 - 120 .
GAO P , LI F , XIAO F K , et al . Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO 2 hydrogenation: Introduction of Cu 2+ at different formation stages of precursors [J ] . Catalysis Today , 2012 , 194 ( 1 ): 9 - 15 .
JEONG H , KIM K I , KIM T H , et al . Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO 2 /Al 2 O 3 catalyst [J ] . Journal of Power Sources , 2006 , 159 ( 2 ): 1296 - 1299 .
武雪梅 , 谭明慧 , 耿海伦 , 等 . ZrO 2 晶型对CO加氢制异丁烯反应影响的研究 [J ] . 燃料化学学报(中英文) , 2023 , 51 ( 4 ): 473 - 481 .
WU X M , TAN M H , GENG H L , et al . Effect of crystal structure of ZrO 2 catalyst on isobutene synthesis from CO hydrogenation [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 4 ): 473 - 481 .
MCTAGGART F . Reduction of zirconium and hafnium oxides [J ] . Nature , 1961 , 191 ( 4794 ): 1192 - 1192 .
GONG N N , ZHANG T , TAN M H , et al . Realizing and revealing complex isobutyl alcohol production over a simple Cu-ZrO 2 catalyst [J ] . ACS Catalysis , 2023 , 13 ( 6 ): 3563 - 3574 .
CUI G Q , ZHANG X , WANG H , et al . ZrO 2 - x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation [J ] . Applied Catalysis B: Environmental , 2021 , 280 : 119406 .
CHEN H , CUI H S , LV Y , et al . CO 2 hydrogenation to methanol over Cu/ZnO/ZrO 2 catalysts: Effects of ZnO morphology and oxygen vacancy [J ] . Fuel , 2022 , 314 : 123035 .
LI C M , FUJIMOTO K . Selective synthesis of isobutane from CO 2 -containing synthesis gas [J ] . Energy & fuels , 2014 , 28 ( 2 ): 1331 - 1337 .
SUN J M , ZHU K K , GAO F , et al . Direct conversion of bio-ethanol to isobutene on nanosized Zn x Zr y O z mixed oxides with balanced acid-base sites [J ] . Journal of the American Chemical Society , 2011 , 133 ( 29 ): 11096 - 11099 .
DING J , JIANG R J , HU S , et al . Enhanced selectivity to methanol in CO 2 hydrogenation on CuO/ZrO 2 catalysts by alkali metal modification [J ] . ChemCatChem , 2025 , 17 ( 2 ): 202401400 .
王竟荣 , 高志华 , 黄伟 . 沉淀剂对CuZnAl催化剂催化CO加氢合成C 2+ 醇性能的影响 [J ] . 石油学报(石油加工) , 2021 , 37 ( 3 ): 498 - 507 .
WANG J R , GAO Z H , HUANG W . Effect of precipitants on the performance of CuZnAl catalyst in CO hydrogenation to C 2+ OH [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2021 , 37 ( 3 ): 498 - 507 .
XIA S X , NIE R F , LU X Y , et al . Hydrogenolysis of glycerol over Cu 0.4 /Zn 5.6- x Mg x Al 2 O 8.6 catalysts: The role of basicity and hydrogen spillover [J ] . Journal of Catalysis , 2012 , 296 : 1 - 11 .
RAHMATMAND B , RAHIMPOUR M R , KESHAVARZ P . Introducing a novel process to enhance the syngas conversion to methanol over Cu/ZnO/Al 2 O 3 catalyst [J ] . Fuel Processing Technology , 2019 , 193 : 159 - 179 .
TSENG S C , JACKSON N B , EKERDT J G . Isosynthesis reactions of CO an d H 2 over zirconium dioxide [J ] . Journal of Catalysis , 1988 , 109 ( 2 ): 284 - 297 .
相宏伟 , 钟炳 , 彭少逸 . CO + H 2 在ZrO 2 催化剂上合成异构烃反应机理的研究 [J ] . 天然气化工—C1化学与化工 , 1994 , 19 ( 4 ): 14 - 19 .
XIANG H W , ZHONG B , PENG S Y . Study on isohydrocarbon synthesis reaction mechanism from ZrO 2 catalyst [J ] . Natural Gas Chemical Industry , 1994 , 19 ( 4 ): 14 - 19 .
SU C L , HE D H , LI J R , et al . Relationship between formation of DME, CH 3 OH and i -C 4 H 8 in isosynthesis [J ] . Studies in Surface Science and Catalysis , 2000 , 130 : 3735 - 3740 .
ZHANG R J , WANG K Z , XING Y Q , et al . Research advances on ZrO 2 -based catalysts for CO hydrogenation to isobutene [J ] . Fuel , 2025 , 380 : 133139 .
胡雅琴 . CO 加氢合成异丁烯研究进展 [J ] . 山西大同大学学报: 自然科学版 , 2012 , 28 ( 6 ): 28 - 32 .
HU Y Q . Progressin synthesis of isobutenefrom CO hydrogenation [J ] . Journal of Shanxi Datong University (Nature Science) , 2012 , 28 ( 6 ): 28 - 32 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构