浏览全部资源
扫码关注微信
1.河南工业大学 环境工程学院,河南 郑州 450001
2.河南工业大学 碳中和研究院,河南 郑州 450001
3.常州大学 城乡矿山研究院 常州市生物质绿色安全高值利用技术重点实验室 江苏 常州 213164
4.哈尔滨工业大学郑州研究院,河南 郑州 450000
李学琴(1989—),博士,讲师,研究方向为生物质能源,E-mail: lxq88889@126.com。
雷廷宙(1963—),博士,研究员,博士研究生导师,研究方向为生物质能源与材料,E-mail: China_newenergy@163.com。
收稿日期:2024-12-10,
修回日期:2025-01-16,
网络出版日期:2025-03-13,
移动端阅览
李学琴,王庚益,魏潇等.催化甲烷-二氧化碳干重整技术现状及催化剂研究进展[J].低碳化学与化工,
LI Xueqin,WANG Gengyi,WEI Xiao,et al.Current status of dry reforming of methane and carbon dioxide technology and research progress of catalysts[J].Low-carbon Chemistry and Chemical Engineering,
李学琴,王庚益,魏潇等.催化甲烷-二氧化碳干重整技术现状及催化剂研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240489.
LI Xueqin,WANG Gengyi,WEI Xiao,et al.Current status of dry reforming of methane and carbon dioxide technology and research progress of catalysts[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240489.
为应对全球气候变化和推动可持续发展,甲烷(CH
4
)-二氧化碳(CO
2
)干重整(DRM)具有环保和经济效益高的特点,成为化工产业的重要发展方向。该技术不仅能够有效减少温室气体排放,还能将CH
4
与CO
2
转化为高价值的化工原料,为费托合成等工业应用提供优质的合成气,在环境保护与资源利用方面具有重要的实际意义。统计了国内外关于DRM发文情况,探讨了DRM反应机理及其反应热力学,从添加金属助剂和控制载体间的相互作用等方面综述了DRM催化剂的类型及研究进展,分析了DRM技术存在的问题,并针对现存的问题提出了相应的改进措施。从2000年起,与DRM相关的文献数量逐年增大,近两年稍有所回落,研究内容和方向更加深入和多元化。现有DRM催化剂存在成本高、易积炭和烧结等问题,可通过添加合适的助剂、氮掺杂和活性炭改性等方式得以优化。但是DRM反应需要在较高温度下进行,能耗较大,对设备要求较高,并且反应过程中气体的流速、压力和
n
(CH
4
)/
n
(CO
2
)对反应效率有显著影响。今后的研究中,应更加注重绿色、可持续和高性能DRM催化剂及反应器的开发和优化。
In order to cope with global climate change and promote sustainable development
the dry reforming of methane (CH
4
) and carbon dioxide (CO
2
) (DRM) has become an important development direction of chemical industry because of its unique environmental protection and economic benefits. This technology can not only effectively reduce greenhouse gas emissions
but also transform CH
4
and CO
2
into high-value chemical raw materials
providing high-quality synthesis gas for industrial applications such as Fisc
her-Tropsch synthesis
which has important practical significance in environmental protection and resource utilization. The related literatures about DRM at home and abroad were counted
and the reaction mechanism and thermodynamics of DRM were discussed. The types and research progress on DRM catalysts were summarized from the aspects of adding metal additives and controlling the interaction between carriers
and the existing problems of DRM technology were analyzed and corresponding improvement measures were put forward in view of the existing problems. It is found that the number of literatures related to DRM has increased year by year since 2000
with a slight decline in recent two years
and the research content and direction are more in-depth and diversified. The existing catalysts have some problems such as high cost
easy carbon deposition and sintering
which can be optimized by adding appropriate additives
nitrogen doping
activated carbon modification and so on. However
DRM reaction needs high temperature to be carried out effectively
which increases the energy consumption and needs strict equipment requirements
and the gas flow rate
pressure and
n
(CH
4
)/
n
(CO
2
) in the reaction process have a significant impact on the reaction efficiency. In future research
more attention should be paid to development and optimization of green
sustainable and high-performance DRM catalysts and reactors.
LU Y , KANG L , GUO D , et al . Double-site doping of a V promoter on Ni x -V-MgAl catalysts for the DRM reaction: Simultaneous effect on CH 4 and CO 2 activation [J ] . ACS Catalysis , 2021 , 11 ( 14 ): 8749 - 8765 .
JIANG X , NIE X W , GUO X W , et al . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J ] . Chemical Reviews , 2020 , 120 ( 15 ): 7984 - 8034 .
董锋 , 杨庆亮 , 龙如银 , 等 . 中国碳排放分解与动态模拟 [J ] . 中国人口·资源与环境 , 2015 , 25 ( 4 ): 1 - 8 .
DONG F , YANG Q L , LONG R Y , et al . Factor decomposition and dynamic simulation of China’s carbon emissions [J ] . China Population, Resources and Environment , 2015 , 25 ( 4 ): 1 - 8 .
徐晋涛 . 中国绿色低碳转型的几个关键问题 [J ] . 新金融 , 2024 , ( 12 ): 22 - 27 .
XU J T . Several key issues in China’s green and low carbon transition [J ] . New Finance , 2024 , ( 12 ): 22 - 27 .
王秀鑫 . 二氧化碳催化转化的研究进展 [J ] . 山东化工 , 2021 , 50 ( 15 ): 82 - 83+90 .
WANG X X . Progress on catalytic conversion of carbon dioxide [J ] . Shandong Chemical Industry , 2021 , 50 ( 15 ): 82 - 83+90 .
DE MIGUEL J C N , CENTENO M A , LAGUNA O H , et al . Policies and motivations for the CO 2 valorization through the sabatier reaction using structured catalysts. A review of the most recent advances [J ] . Catalysts , 2018 , 8 ( 12 ): 578 .
成昊霖 , 年瑶 , 韩优 . CH 4 和CO 2 共转化反应机理研究进展 [J ] . 化工进展 , 2024 , 43 ( 1 ): 60 - 75 .
CHENG H L , NIAN Y , HAN Y . Progress in the mechanism of CH 4 and CO 2 co-conversion reactions [J ] . Chemical Industry and Engineering Progress , 2024 , 43 ( 1 ): 60 - 75 .
付彧 , 孙予罕 . CH 4 -CO 2 重整技术的挑战与展望 [J ] . 中国科学: 化学 , 2020 , 50 ( 7 ): 816 - 831 .
FU Y , SUN Y H . CH 4 -CO 2 reforming: Challenges and outlook [J ] . SCIENTIA SINICA Chimica , 2020 , 50 ( 7 ): 816 - 831 .
李真薇 , 李玉峰 , 陈杰 , 等 . 载体形貌调控Ni基催化剂甲烷干重整反应性能的研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 57 - 65 .
LI Z W , LI Y F , CHEN J , et al . Study on reaction performance in methane dry reforming over Ni-based catalysts regulated by support morphologies [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 57 - 65 .
GADALLA A , BOWER B . The role of catalyst support on the activity of nickel for reforming methane with CO 2 [J ] . Chemical Engineering Science , 1988 , 43 : 3049 - 3062 .
ARAMOUNI N , TOUMA J G , TARBOUSH B A , et al . Catalyst design for dry reforming of methane: Analysis review [J ] . Renewable and Sustainable Energy Reviews , 2018 , 82 : 2570 - 2585 .
AASBERG-PETERSEN K , HANSEN J H B , CHRISTENSEN T S , et al . Technologies for large-scale gas conversion [J ] . Applied Catalysis A: General , 2001 , 221 ( 1/2 ): 379 - 387 .
HU Q , WANG C H . Insight into the Fe 2 O 3 /CaO-based chemical looping process for biomass conversion [J ] . Bioresource Technology , 2020 , 310 : 123384 .
ABDULRASHEED A , JALIL A A , GAMBO Y , et al . A review on catalyst development for dry reforming of methane to syngas: Recent advances [J ] . Renewable and Sustainable Energy Reviews , 2019 , 108 : 75 - 93 .
赵倩 , 丁干红 . 甲烷二氧化碳重整工艺研究及经济性分析 [J ] . 天然气化工—C1化学与化工 , 2020 , 45 ( 4 ): 71 - 75+81 .
ZHAO Q , DING G H . Process research and economic analysis of carbon dioxide reforming of methane [J ] . Natural Gas Chemical Industry , 2020 , 45 ( 4 ): 71 - 75+81 .
陈涛 , 方镭 , 罗伟 , 等 . 双金属合金团簇M 12 Ni (M = Pt, Sn, Cu)催化甲烷干法重整反应的理论研究 [J ] . 高等学校化学学报 , 2019 , 40 ( 10 ): 2135 - 2142 .
CHEN T , FANG L , LUO W , et al . Theoretical study of dry reforming of methane catalyzed by bimetallic alloy cluster M 12 Ni (M = Pt, Sn, Cu) [J ] . Chemical Journal of Chinese Universities , 2019 , 40 ( 10 ): 2135 - 2142 .
FOPPA L , MARGOSSIAN T , KIM S M , et al . Contrasting the role of Ni/Al 2 O 3 interfaces in water-gas shift and dry reforming of methane [J ] . Journal of the American Chemical Society , 2017 , 139 ( 47 ): 17128 - 17139 .
CHEN S , ZAFFRAN J , YANG B . Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation [J ] . Applied Catalysis B: Environmental , 2020 , 270 : 118859 .
ZHANG L Y , MENG Y , YANG J M , et al . Theoretical study on dry reforming of methane catalyzed by Cu 12 M (M = Cu, Fe, Co, Ni) core-shell bimetallic clusters [J ] . Fuel , 2021 , 303 ( 1 ): 121263 .
MOHAMMED M , IJAZ H , SAHEED A. G , et al . Highly dispersed nickel-tuned silica lanthana catalyst: Interplay of morphology and textural properties for hydrogen-rich syngas through the carbon dioxide reforming of methane [J ] . Journal of the Energy Institute , 2024 , 114 : 101650 .
陈建 . 活性炭负载金属催化剂优化固相合成与催化CH 4 /CO 2 反应性能研究 [D ] . 山东科技大学 , 2020 .
CHEN J . Optimization of solid phase synthesis and catalytic performance of CH 4 /CO 2 reaction over metal catalyst supported by activated carbon [D ] . Shandong University of Science and Technology , 2020 .
SOMAVIA A , MUHAMMAD U F , SUNDUS U , et al . Catalyst breakthroughs in methane dry reforming: Employing machine learning for future advancements [J/OL ] . International Journal of Hydrogen Energy : 1 - 38 [ 2024-12-10 ] . DOI: 10.1016/j.ijhydene.2024.08.506 http://dx.doi.org/10.1016/j.ijhydene.2024.08.506 .
MARINA A P , ANDREA B , LAIA P S , et al . Enhancing the performance of a novel CoRu/CeO 2 bimetallic catalyst for the dry reforming of methane via a mechanochemical process [J ] . Applied Catalysis B: Environment and Energy , 2024 , 345 : 123624 .
YAO X L , CHENG Q P , ATTADA Y , et al . Atypical stability of exsolved Ni-Fe alloy nanoparticles on double layered perovskite for CO 2 dry reforming of methane [J ] . Applied Catalysis B: Environmental , 2023 , 328 : 122479 .
LI X Y , LI D , TIAN H , et al . Dry reforming of methane over Ni/La 2 O 3 nanorod catalysts with stabilized Ni nanoparticles [J ] . Applied Catalysis B: Environmental , 2017 , 202 : 683 - 694 .
BACHILLER-BAEZA B , MATEOS-PEDRERO C , SORIA M A , et al . Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO 2 -La 2 O 3 [J ] . Applied Catalysis B: Environmental , 2013 , 129 : 450 - 459 .
钱慧琳 , 冉金玲 , 何安帮 , 等 . 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 55 - 61 .
QIAN H L , RAN J L , HE A B , et al . Thermodynamic analysis of carbon dioxide-methane dry reforming and its carbon deposition control [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 55 - 61 .
MURAZA O , GALADIMA A . A review on coke management during dry reforming of methane [J ] . International Journal of Energy Research , 2015 , 39 ( 9 ): 1196 - 1216 .
ALIPOUR Z , REZAEI M , MESHKANI F . Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al 2 O 3 in dry reforming of methane [J ] . Journal of Industrial and Engineering Chemistry , 2014 , 20 : 2858 - 2863 .
SENGUPTA S , DEO G . Modifying alumina with CaO or MgO in supported Ni and Ni-Co catalysts and its effect on dry reforming of CH 4 [J ] . Journal of CO 2 Utilization , 2015 , 10 : 66 - 67 .
WU Z X , YANG B , MIAO S , et al . Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane [J ] . ACS catalysis , 2019 , 9 ( 4 ): 2693 - 2700 .
YOON S G , KOO H J , CHANG S T . Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions [J ] . ACS Applied Materials & Interfaces , 2015 , 7 ( 49 ): 27562 - 27570 .
张国佩 , 王聪 , 张肖阳 等 . 镍-镧双金属催化剂CO 2 -CH 4 重整制合成气催化性能研究 [J/OL ] . 低碳化学与化工 : 1 - 9 [ 2024-12-10 ] . DOI: 10.12434/j.issn.2097-2547.20240380 http://dx.doi.org/10.12434/j.issn.2097-2547.20240380 .
ZHANG G P , WANG C , ZHANG X Y , et al . Study on catalytic performance of Ni-La bimetallic catalyst for CO 2 -CH 4 reforming to syngas [J/OL ] . Low-Carbon Chemistry and Chemical Engineering : 1 - 9 [ 2024-12-10 ] . DOI: 10.12434/j.issn.2097-2547.20240380 http://dx.doi.org/10.12434/j.issn.2097-2547.20240380 .
CHEIN R Y , FUNG W Y . Syngas production via dry reforming of methane over CeO 2 modified Ni/Al 2 O 3 catalysts [J ] . International Journal of Hydrogen Energy , 2019 , 44 ( 28 ): 14303 - 14315 .
WANG Y N , CHEN Y S , ZHANG R J , et al . Insights into the contribution of oxygen vacancies on CO 2 activation for dry reforming of methane over ceria-based solid solutions [J ] . Chemical Engineering Journal , 2024 . 481 : 148360 .
HE D D , WU S J , CAO X H , et al . Dynamic trap of Ni at elevated temperature for yielding high-efficiency methane dry reforming catalyst [J ] . Applied Catalysis B: Environment and Energy , 2024 , 346 : 123728 .
杨延涛 , 杨树华 , 黄伟庆 , 等 . 催化剂表面酸性的改性对甲烷二氧化碳干重整反应的影响 [J ] . 可再生能源 , 2021 , 39 ( 5 ): 576 - 581 .
YANG Y T , YANG S H , HUANG Q W , et al . Effect of surface acidity modification on CH 4 -CO 2 dry reforming [J ] . Renewable Energy Resources , 2021 , 39 ( 5 ): 576 - 581 .
ZHANG Y F , ZHANG G J , LIU J , et al . Dry reforming of methane over Ni/SiO 2 catalysts: Role of s upport structure properties [J ] . Fuel , 2023 , 340 : 127490 .
YUSUF M , FAROOQI A S , AL-KAHTANI A A , et al . Syngas production from greenhouse gases using Ni-W bimetallic catalyst via dry methane reforming: Effect of W addition [J ] . International Journal of Hydrogen Energy , 2021 , 46 ( 53 ): 27044 - 27061 .
LI B T , LIN X R , LUO Y , et al . Design of active and stable bimodal nickel catalysts for methane reforming with CO 2 [J ] . Fuel Processing Technology , 2018 , 176 : 153 - 166
DANDAH E , ABOU RACHED J , AOUAD S , et al . CO 2 reforming of methane over Ni x Mg 6- x Al 2 catalysts: Effect of lanthanum doping on catalytic activity and stability [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 17 ): 12808 - 12817 .
GAO X H , LIU G G , WEI Q H , et al . Carbon nanofibers decorated SiC foam monoliths as the support of anti-sintering Ni catalyst for methane dry reforming [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 26 ): 16547 - 16556 .
XU L , LIU Y A , LI Y J , et al . Catalytic CH 4 reforming with CO 2 over activated carbon based catalysts [J ] . Applied Catalysis A: General , 2014 , 469 : 387 - 397 .
FIDALGO B , ARENILLAS A , MENÉNDEZ J A . Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO 2 reforming of CH 4 [J ] . Fuel , 2010 , 89 ( 12 ): 4002 - 4007 .
YANG J , YUE L M , LIN B B , et al . CO 2 adsorption of nitrogen-doped carbons prepared from nitric acid preoxidized petroleum coke [J ] . Energy & Fuels , 2017 , 31 ( 10 ): 11060 - 11068 .
马晓 , 秦晓伟 , 张晓娣 , 等 . 氮掺杂生物质碳材料催化剂的制备及其催化CH 4 -CO 2 重整性能 [J ] . 洁净煤技术 , 2022 , 28 ( 5 ): 59 - 70 .
MA X , QIN X W , ZHANG X D , et al . Preparation of biomass nitrogen-doped carbon material catalyst and its catalytic performance for CO 2 reforming of CH 4 [J ] . Clean Coal Technology , 2022 , 28 ( 5 ): 59 - 70 .
秦晓伟 , 张国杰 , 李晟 , 等 . 非金属氮掺杂活性炭催化剂制备及其催化CH 4 -CO 2 重整反应 [J ] . 化工进展 , 2021 , 40 ( 6 ): 3203 - 3214 .
QIN X W , ZHANG G J , LI S , et al . Preparation of metal-free nitrogen-doped activated carbon as catalysts for carbon dioxide reforming of methane [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 6 ): 3203 - 3214 .
ZHANG G J , SUN Y H , XU Y , et al . Catalytic performance of N-doped activated carbon supported cobalt catalyst for carbon dioxide reforming of methane to synthesis gas [J ] . Journal of the Taiwan Institute of Chemical Engineers , 2018 , 93 : 234 - 244 .
GUO F B , ZHANG Y F , ZHANG G J , et al . Syngas production by carbon dioxide reforming of methane over different semi-cokes [J ] . Journal of Power Sources , 2013 , 231 ( 1 ): 82 - 90 .
DEVID E , ZHANG D Y , WANG D P , et al . Dry reforming of methane under mild conditions using radio frequency plasma [J ] . Energy Technology , 2020 , 8 ( 5 ): 1900886 .
夏伟 , 黎小辉 , 白婷 , 等 . 甲烷干重整与二氧化碳甲烷化的工艺耦合研究 [J ] . 工程科学学报 , 2024 , 46 ( 11 ): 2110 - 2210 .
XIA W , LI X H , BAI T , et al . Study on process coupling between dry reforming of methane and methanation of carbon dioxide [J ] . Chinese Journal of Engineering , 2024 , 46 ( 11 ): 2110 - 2210 .
仉景鹏 , 卢威 , 赵保槐 , 等 . 对撞流反应器制备高性能Ni/CeO 2 甲烷干重整催化剂及其反应机理研究 [J ] . 中外能源 , 2023 , 28 ( 10 ): 67 - 73 .
ZHANG J P , LU W , ZHAO B H , et al . Application of micro-impinging stream reactor in preparation of high performance Ni/CeO 2 catalysts for dry r eforming of methane and the study on reaction mechanism [J ] . Sino-Global Energy , 2023 , 28 ( 10 ): 67 - 73 .
LIU X L , CHENG B , ZHU Q B , et al . Highly efficient solar-driven CO 2 reforming of methane via concave foam reactors [J ] . Energy , 2022 , 261 : 125141 .
秦宁 , 赵露露 , 穆泽垲 , 等 . 太阳能驱动甲烷干重整Ni泡沫反应器的设计与优化 [J ] . 低碳化学与化工 , 2024 , 49 ( 5 ): 72 - 80 .
QIN N , ZHAO L L , MU Z K , et al . Design and optimization of solar energy driven Ni foam reactor for methane dry reforming [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 5 ): 72 - 80 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构