浏览全部资源
扫码关注微信
沈阳大学 理学院,辽宁 沈阳 110044
胡博(1991—),硕士,实验师,研究方向为物理化学,E-mail:hubo5353@163.com。
李锋(1974—),博士,教授,研究方向为电化学,E-mail:syufengli@126.com。
收稿日期:2024-12-09,
修回日期:2025-01-13,
网络出版日期:2025-04-11,
移动端阅览
胡博,吴俊宏,李锋.电化学技术在二氧化碳捕集与转化中的研究进展[J].低碳化学与化工,
HU Bo,WU Junhong,LI Feng.Research progress of electrochemical technology in carbon dioxide capture and conversion[J].Low-carbon Chemistry and Chemical Engineering,
胡博,吴俊宏,李锋.电化学技术在二氧化碳捕集与转化中的研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240483.
HU Bo,WU Junhong,LI Feng.Research progress of electrochemical technology in carbon dioxide capture and conversion[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240483.
由于全球气候变化带来的严峻挑战,碳捕集、利用与封存(CCUS)技术成为化工行业绿色转型的关键。电化学技术以其高效能量转换和环境友好性,在二氧化碳(CO
2
)捕集与转化中展现出巨大潜力,但其在工业规模应用中仍面临诸多挑战。综述了电化学介导的CO
2
捕集技术(EMCC)和电化学CO
2
转化技术(ECCT)的最新进展,系统分析了吸附剂优化、电极材料选择、反应器设计创新以及多技术耦合集成应用对提升CO
2
捕集效率、产物选择性和系统稳定性的作用。分析发现尽管电化学技术在CCUS领域具有优势,但在材料稳定性、系统集成复杂性和成本控制等方面仍需进一步突破。未来研究应聚焦于开发高效稳定的材料、优化系统集成策略、降低应用成本,并探索电化学技术与其他CCUS技术的协同效应,以实现其在工业规模上的广泛应用和加快产业化进程,为低碳化工和环境可持续性提供有力支撑。
Due to the severe challenges caused by global climate change
carbon capture
utilization and storage (CCUS) technology has become the key to the green transformation of the chemical industry. Electrochemical technology has shown great potential in carbon dioxide (CO
2
) capture and conversion due to its high energy conversion efficiency and environmental friendliness. However
it still faces many challenges in industrial scale applications. The latest progress of electrochemical mediated carbon dioxide capture technology (EMCC) and electrochemical carbon dioxide conversion technology (ECCT) is reviewed. The impact of adsorbent optimization
electrode material selection
reactor design innovation
and multi-technology coupling integrated application on improving CO
2
capture efficiency
products selectivity and system stability is systematically analyzed. It is found that although electrochemical technology has advantages in CCUS
it still needs further breakthroughs in material stability
system integration complexity and cost control. Future research should focus on developing efficient and stable materials
optimizing system integration strategies
reducing application costs
and exploring the synergistic effect of electrochemical technology and other CCUS technologies
to achieve its wide application and industrialization process in industrial scale
providing robust support for the low-carbon chemical industry and environmental sustainability.
李婉君 , 张锦威 , 袁小帅 , 等 . “双碳”目标下化石能源低碳转化方向探讨 [J ] . 科学通报 , 2024 , 69 ( 8 ): 990 - 996 .
LI W J , ZHANG J W , YUAN X S , et al . Perspective on the low-carbon transformation pathways of fossil energy under dual carbon goals [J ] . Chinese Science Bulletin , 2024 , 69 ( 8 ): 990 - 996 .
杨友麒 . “双碳”形势下能源化工企业绿色低碳转型进展 [J ] . 现代化工 , 2023 , 43 ( 1 ): 1 - 12 .
YANG Y L . Progress of energy and chemical companies in transition towards green low carbon under peak carbon dioxide emission and carbon neutrality [J ] . Modern Chemical Industry , 2023 , 43 ( 1 ): 1 - 12 .
曲建升 , 陈伟 , 曾静静 , 等 . 国际碳中和战略行动与科技布局分析及对我国的启示建议 [J ] . 中国科学院院刊 , 2022 , 37 ( 4 ): 444 - 458 .
QU J S , CHEN W , ZENG J J , et al . Analysis of international carbon neutralization strategicactions and technology layout and enlightenmentsuggestions to china [J ] . Bulletin of Chinese Academy of Sciences , 2022 , 37 ( 4 ): 444 - 458 .
顾大钊 , 李阳 , 李根生 , 等 . 面向2040年我国碳中和重点领域工程科技发展战略研究 [J ] . 中国工程科学 , 2024 , 26 ( 5 ): 80 - 90 .
GU D Z , LI Y , LI G S , et al . Development strategy of engineering science andtechnology in key fields of carbon neutrality in chinatoward 2040 [J ] . Strategic Study of CAE , 2024 , 26 ( 5 ): 80 - 90 .
羊凌玉 , 刘宇 , 张静 , 等 . 基于文献计量的碳捕集、利用与封存技术研究进展分析 [J ] . 生态学报 , 2024 , 44 ( 24 ): 11523 - 11535 .
YANG L Y , LIU Y , ZHANG J , et al . Research progress of carbon capture, utilization and storage technologies basedon bibliometr [J ] . Acta Ecologica Sinica , 2024 , 44 ( 24 ): 11523 - 11535 .
OVERA S , FERIC T G , PARK A A , et al . Tandem and hybrid processes for carbon dioxide utilization [J ] . Joule , 2021 , 5 ( 1 ): 8 - 13 .
HE R N , XU N N , HASAN I M , et al . Advances in electrolyzer design and development for electrochemical CO reduction [J ] . EcoMat , 2023 , 5 ( 7 ): e12346 .
SEGER B , ROBERT M , JIAO F . Best practices for electrochemical reduction of carbon dioxide [J ] . Nature Sustainability , 2023 , 6 ( 3 ): 236 - 238 .
DIEDERICHSEN K M , SHARIFIAN R , KANG J S , et al . Electrochemical methods for carbon dioxide separations [J ] . Nature Reviews Methods Primers , 2022 , 2 ( 1 ): 68 .
ALI N , BILAL M , NAZIR M S , et al . Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme [J ] . Science of The Total Environment , 2020 , 712 : 136482 .
LIU Y Y , YE H Z , DIEDERICHSEN K M , et al . Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media [J ] . Nature Communications , 2020 , 11 ( 1 ): 2278 .
HU L M , WRUBEL J A , BAEZ-COTTO C M , et al . A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO 2 to formic acid [J ] . Nature Communications , 2023 , 14 ( 1 ): 7605 .
SEGETS , D , ANDRONESCU , C , APFEL , U P . Accelerating CO 2 electrochemical conversion towards industrial implementation [J ] . Nature Communications , 2023 , 14 : 7950 .
ZITO A M , CLARKE L E , BARLOW J M , et al . Electrochemical carbon dioxide capture and concentration [J ] . Chemical Reviews , 2023 , 123 ( 13 ): 8069 - 8098 .
MASSEN-HANE M , DIEDERICHSEN K M , HATTON T A . Engineering redox-active electrochemically mediated carbon dioxide capture systems [J ] . Nature Chemical Engineering , 2024 , 1 ( 1 ): 35 - 44 .
LI X , MATHUR A , LIU A , et al . Electrifying carbon capture by developing nanomaterials at the interface of molecular and process engineering [J ] . Accounts of Chemical Research , 2023 , 56 ( 20 ): 2763 - 2775 .
KHOSROWSHAHI M S , MASHHADIMOSLEM H , SHAYESTEH H , et al . Natural products derived porous carbons for CO 2 capture [J ] . Advanced Science , 2023 , 10 ( 36 ): 2304289 .
MUKHOPADHYAY S , NAEEM M S , SHANKER G S , et al . Local CO 2 reservoir layer promotes rapid and selective electrochemical CO 2 reduction [J ] . Nature Communications , 2024 , 15 ( 1 ): 3397 .
BAGHERI M , LOURENçO M A O , DANGBEGNON J K , et al . Green synthesis of MOF-based materials for electrochemical reduction of carbon dioxide [J ] . ChemSusChem , 2024 : e202400684 .
QUAN W Y , HOLMES H E , ZHANG F Y , et al . Scalable formation of diamine-appended metal-organic framework hollow fiber sorbents for postcombustion CO 2 capture [J ] . JACS Au , 2022 , 2 ( 6 ): 1350 - 1358 .
HUANG J M , ZHANG X D , HUANG J Y , et al . MOF-based materials for electrochemical reduction of carbon dioxide [J ] . Coordination Chemistry Reviews , 2023 , 494 : 215333 .
JANG G G , JUNG G S , MEYER P A , et al . Effective direct steam regeneration of bis-iminoguanidine solid sorbent used for carbon dioxide capture [J ] . Chemical Engineering Journal , 2024 , 495 : 153469 .
SEO H , RAHIMI M , HATTON T A . Electrochemical carbon dioxide capture and release with a redox-active amine [J ] . Journal of the American Chemical Society , 2022 , 144 ( 5 ): 2164 - 2170 .
MAO Y H , SULTAN S , FAN H F , et al . Stability improvement of the advanced electrochemical CO 2 capture process with high-capacity polyamine solvents [J ] . Applied Energy , 2024 , 369 : 123597 .
WANG J Y , FENG X L , WEN S K , et al . Recent advances in amine-functionalized silica adsorbents for CO 2 capture [J ] . Renewable and Sustainable Energy Reviews , 2024 , 203 : 114724 .
BOUTIN E , HAUSSENER S . Rate-determining step for electrochemical reduction of carbon dioxide into carbon monoxide at silver electrodes [J ] . ACS Catalysis , 2024 , 14 ( 11 ): 8437 - 8445 .
GUO Y H , MASSEN-HANE M , ENDY G , et al . Porous polymeric electrodes for electrochemical carbon dioxide capture [J ] . Advanced Materials , 2024 , 36 ( 40 ): 2407567 .
ZHANG T T , WANG J , SHANG H S , et al . Active oxygenated structure-intensified CO 2 capture enables efficient electrochemical ethylene production over carbon nanofibers [J ] . Angewandte Chemie International Edition , 2024 , 63 ( 36 ): e202401707 .
LI Q , QU T , X TAN S T , et al . Structure-activity relationship of a dual-function amine-based electrolyte for integrated CO 2 capture and electrochemical conversion [J ] . Chemical Engineering Journal , 2024 , 498 : 155056 .
HU M , TAN R , JIANG X J , et al . Capture of CO 2 during the electrolysis process and its utilization in supercapacitor materials [J ] . ACS Omega , 2024 , 9 ( 6 ): 6888 - 6893 .
LI H G , ZICK M E , TRISUKHON T , et al . Capturing carbon dioxide from air with charged-sorbents [J ] . Nature , 2024 , 630 : 654 - 659 .
WANG M , HERZOG H J , HATTON T A , et al . CO 2 capture using electrochemically mediated amine regeneration [J ] . Industrial & Engineering Chemistry Research , 2020 , 59 ( 15 ): 7087 - 7096 .
ISOGAI H , NAKAGAKI T . Power-to-heat amine-based post-combustion CO 2 capture system with solvent storage utilizing fluctuating electricity prices [J ] . Applied Energy , 2024 , 368 : 123519 .
WANG M , SHAW R , GENCER E , et al . Technoeconomic analysis of the electrochemically mediated amine regeneration CO 2 capt ure process [J ] . Industrial & Engineering Chemistry Research , 2020 , 59 ( 31 ): 14085 - 14095 .
ZHAO Y Y , RAJ J T , XU X , et al . Carbon catalysts empowering sustainable chemical synthesis via electrochemical CO 2 conversion and two-electron oxygen reduction reaction [J ] . Small , 2024 : 2311163 .
GANDIONCO K A , KIM J , BEKAERT L , et al . Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates [J ] . Carbon Energy , 2024 , 6 ( 3 ): e410 .
LIU X , WANG Y F , DAI Z W , et al . Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass [J ] . Journal of Energy Chemistry , 2024 , 92 : 705 - 729 .
ZONG Z Y , KOERS N , CAI G P , et al . CO 2 -to-methanol: Economic and environmental comparison of emerging and established technologies with dry reforming and methane pyrolysis [J ] . Chemical Engineering Journal , 2024 , 487 : 150274 .
BAE D , LEE T , KWON W , et al . Porous Cu/C nanofibers promote electrochemical CO 2 -to-ethylene conversion via high CO 2 availability [J ] . Journal of Materials Chemistry A , 2024 , 12 ( 28 ): 17295 - 17305 .
LIU Y R , LI F F , ZHANG X P , et al . Recent progress on electrochemical reduction of CO 2 to methanol [J ] . Current Opinion in Green and Sustainable Chemistry , 2020 , 23 : 10 - 17 .
GAO J , BAHMANPOUR A , KRÖCHER O , et al . Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals [J ] . Nature Chemistry , 2023 , 15 ( 5 ): 705 - 713 .
ZHAO C C , WANG J L . Electrochemical reduction of CO 2 to formate in aqueous solution using electro-deposited Sn catalysts [J ] . Chemical Engineering Journal , 2016 , 293 : 161 - 170 .
WEEKES D M , SALVATORE D A , REYES A , et al . Electrolytic CO 2 reduction in a flow cell [J ] . Accounts of Chemical Research , 2018 , 51 ( 4 ): 910 - 918 .
LEES E W , MOWBRAY B A , PARLANE F G , et al . Gas diffusion electrodes and membranes for CO 2 reduction electrolysers [J ] . Nature Reviews Materials , 2022 , 7 ( 1 ): 55 - 64 .
WANG Z T , ZHOU Y S , QIU P , et al . Advanced catalyst design and reactor configuration upgrade in electrochemical carbon dioxide conversion [J ] . Advanced Materials , 2023 , 35 ( 52 ): 2303052 .
CHEN C KOTYK J F K , SHEEHAN S W . Progress toward commercial application of electrochemical carbon dioxide reduction [J ] . Chem , 2018 , 4 ( 11 ): 2571 - 2586 .
MULMI S , THANGADURAI V . Editors’ choice-review-solid-state electrochemical carbon dioxide sensors: Fundamentals, materials and applications [J ] . Journal of The Electrochemical Society , 2020 , 167 ( 3 ): 037567 .
FERGUS J W . A review of electrolyte and electrode materials for high temperature electrochemical CO 2 and SO 2 gas sensors [J ] . Sensors and Actuators B: Chemical , 2008 , 134 ( 2 ): 1034 - 1041 .
王光伟 , 陈鸿珍 , 李友凤 , 等 . 锂钡掺杂氧化碳酸盐在二氧化碳电化学传感器中的应用 [J ] . 电子元件与材料 , 2019 , 38 ( 7 ): 42 - 48 .
WANG G W , CHEN H Z , LI Y F , et al . Application of Li and Ba co-doped oxycarbonate in CO 2 potentiometric sensor [J ] . Electronic Components and Materials , 2019 , 38 ( 7 ): 42 - 48 .
韩贵宾 , 陈存广 , 孙媛媛 , 等 . 电流型电化学传感器的研究进展 [J ] . 科技创新与应用 , 2017 , ( 23 ): 195 - 196 .
HAN G B , CHEN C G , SUN Y Y , et al . Research progress of current type electrochemical sensors [J ] . Technology Innovation and Application , 2017 , ( 23 ): 195 - 196 .
郝建淦 , 朱羽双 , 郑晓虹 . Na 3 V 2 (PO 4 ) 3 的制备及其对二氧化碳的敏感性能研究 [J ] . 山东化工 , 2024 , 53 ( 7 ): 37 - 39 .
HAO J G , ZHU Y S , ZHEN X H . Preparation of Na 3 V 2 (PO 4 ) 3 and its sensitivity to carbon dioxide [J ] . Shandong Chemical Industry , 2024 , 53 ( 7 ): 37 - 39 .
FILIPOVIC L , LAHLALIA A . Review-system-on-chip SMO gas sensor integration in advanced CMOS technology [J ] . Journal of The Electrochemical Society , 2018 , 165 ( 16 ): B862 .
WANG G W , MULMI S , THANGADURAI V . Synt hesis and characterization of calcium double perovskites for the potential application of semiconducting CO 2 sensors [J ] . Ceramics International , 2021 , 47 ( 21 ): 30483 - 30503 .
HIRAGOND C B , KIM J , KIM H , et al . Elemental-doped catalysts for photoelectrochemical CO 2 conversion to solar fuels [J ] . Solar RRL , 2024 , 8 ( 11 ): 2400022 .
XIE Y Y , PAN Y M . Advances in photochemical/electrochemical synthesis of heterocyclic compounds from carbon dioxide [J ] . Green Chemistry , 2024 , 26 ( 18 ): 9599 - 9618 .
XIE Z H , HUANG E , GARG S , et al . CO 2 fixation into carbon nanofibres using electrochemical-thermochemical tandem catalysis [J ] . Nature Catalysis , 2024 , 7 ( 1 ): 98 - 109 .
ZHANG L Y , TANG Z Y , GAO R X , et al . CCUS-assisted electricity-chemical polygeneration system for decarburizing coal-fired power plant: Process integration and performance assessment [J ] . Journal of Cleaner Production , 2024 , 450 : 141972 .
MOIOLI S , DE GUIDO D , PELLEGRINI L A , et al . Techno-economic assessment of the CO 2 value chain with CCUS applied to a waste-to-energy Italian plant [J ] . Chemical Engineering Science , 2024 , 287 : 119717 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构