浏览全部资源
扫码关注微信
1.太原理工大学 环境与生态学院,山西 太原 030024
2.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室
3.怀俄明大学 工程与物理科学学院和能源学院,怀俄明州 拉勒米 82071
4.山西允博环保新技术有限公司,山西 太原 030024
5.北京建筑材料科学研究总院有限公司,北京 100041
6.太原理工大学煤炭转化技术工程有限公司,山西 太原 030024
李炆轩(1999—),硕士研究生,研究方向为CO2催化转化,E-mail:2969317812@qq.com。
温月丽(1979—),博士,副教授,研究方向为CO2催化转化,E-mail:wenyueli@tyut.edu.cn;
黄 伟(1962—),博士,教授,研究方向为碳一化学与多相催化,E-mail:huangwei@tyut.edu.cn。
收稿日期:2024-11-28,
修回日期:2025-01-02,
网络出版日期:2025-04-16,
移动端阅览
李炆轩,王斌,李晶等.Ce掺杂CuZnAl催化剂对CO2加氢合成甲醇催化性能的影响[J].低碳化学与化工,
LI Wenxuan,WANG Bin,LI Jing,et al.Ce-doped CuZnAl catalyst effects on catalytic performance of CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,
李炆轩,王斌,李晶等.Ce掺杂CuZnAl催化剂对CO2加氢合成甲醇催化性能的影响[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240471.
LI Wenxuan,WANG Bin,LI Jing,et al.Ce-doped CuZnAl catalyst effects on catalytic performance of CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240471.
化石燃料利用而造成大量CO
2
排放,引发一系列环境问题。因此,通过CuZnAl催化剂热催化CO
2
转化为甲醇是一种有效的CO
2
减排方式,但该催化剂的催化性能还有很大的提升空间。采用原位共沉淀法制备了不同Ce掺杂量的CZACe
x
催化剂,浸渍法制备了CZA-5%Ce,并考察了不同Ce掺杂方法对催化剂物化性质的影响。结合XRD、N
2
吸/脱附、H
2
-TPR和XPS等对催化剂的物化性质和Ce的作用机理进行了探究。结果表明,Ce掺杂能够为催化剂提供丰富的氧空位,氧空位能够有效促进CO
2
转化,提高CO
2
转化率。不同掺杂方式制得的催化剂织构性质和Ce作用形式存在明显差异,浸渍法掺杂Ce可增强Ce与Cu物种间的相互作用,更有利于氧空位和Ce
3+
的形成,从而使CZA-5%Ce具有最佳的催化性能,在250 ℃、3 MPa和
V
(H
2
):
V
(CO
2
)=3:1的条件下,CZA-5%Ce的CO
2
转化率为15.63%,甲醇选择性为36.35%,甲醇时空收率为83.35 mg/(mL·h)。
A large amount of carbon dioxide emissions caused by the use of fossil fuels have caused a series of environmental problems. Therefore
the thermal catalytic conversion of CO
2
to methanol by CuZnAl catalyst is a effective way to reduce CO
2
emission
but the catalytic performance of the catalyst still needs to be improved. CZACe
x
catalysts doped with different Ce contents were prepared by in situ co-precipitation method
and the effects of different Ce doping methods on the physicochemical properties of the catalysts were studied. The physicochemical of the catalyst and the mechanism of Ce were investigated by XRD
N
2
adsorption/desorption
H
2
-TPR and XPS. The results show that Ce doping can provide abundant oxygen vacancies
which can effectively promote CO
2
conversion and improve CO
2
conversion rate. Different doping methods lead to significant differences in the internal texture properties and Ce interaction forms of catalysts. Doping Ce by impregnation method can enhance the interaction between Ce species and Cu species
which is more conducive to the formation of oxygen vacancy and Ce
3+
so that CZA-5%Ce has the best catalytic performance. Under the conditions of 250 ℃
3 MPa and
V
(H
2
):
V
(CO
2
) = 3:1
the CO
2
conversion rate
the methanol selectiv
ity and the methanol space-time yield of CZA-5%Ce is 15.63%
36.35% and 83.35 mg/(mL·h).
ZHANG Y X , ZHANG Z B , LU Y R , et al . Efficient hydrate-based carbon capture system enabled by red blood cell inspired encapsulation [J ] . Applied Energy , 2024 , 359 : 122784 .
DA CRUZ T T , BALESTIERI J A P , SILVA J M D , et al . Life cycle assessment of carbon capture and storage/utilization: From current state to future research directions and opportunities [J ] . International Journal of Greenhouse Gas Control , 2021 , 108 : 103309 .
QUARTON C J , SAMSATLI S . The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation [J ] . Applied Energy , 2020 , 257 : 113936 .
ZHENG T T , ZHANG M L , WU L H , et al . Upcycling CO 2 into energy-rich long-chain compounds via electrochemical and metabolic engineering [J ] . Nature Catalysis , 2022 , 5 ( 5 ): 388 - 396 .
LIU S S , WANG M F , CHENG Q Y , et al . Turning waste into wealth: Sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules [J ] . ACS Nano , 2022 , 16 ( 11 ): 17911 - 17930 .
HU J D , YANG F Y , QU J F , et al . Synergetic bimetallic catalysts: A remarkable platform for efficient conversion of CO 2 to high value-added chemicals [J ] . Journal of Energy Chemistry , 2023 , 87 : 162 - 191 .
GOEPPERT A , CZAUN M , JONES J P , et al . Recycling of carbon dioxide to methanol and derived products-closing the loop [J ] . Chemical Society Reviews , 2014 , 43 ( 23 ): 7995 - 8048 .
OLAH G A , PRAKASH G K S , GOEPPERT A . Anthropogenic chemical carbon cycle for a sustainable future [J ] . Journal of the American Chemical Society , 2011 , 133 ( 33 ): 12881 - 12898 .
SHI Z S , TAN Q Q , TIAN C , et al . CO 2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature [J ] . Journal of Catalysis , 2019 , 379 : 78 - 89 .
LIU T K , XU D , WU D D , et al . Spinel ZnFe 2 O 4 regulates copper sites for CO 2 hydrogenation to methanol [J ] . ACS Sustainable Chemistry & Engineering , 2021 , 9 ( 11 ): 4033 - 4041 .
ORTNER N , ZHAO D , MENA H , et al . Revealing origins of methanol selectivity loss in CO 2 hydrogenation over CuZn-containing catalysts [J ] . ACS Catalysis , 2023 , 13 ( 1 ): 60 - 71 .
LEE K , MENDES P C D , JEON H , et al . Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO x [J ] . Nature Communications , 2023 , 14 : 819 .
HAN A Z , DING J , ZHONG Q . Role of single-atom Pd in Cu/ZrO 2 catalysts for CO 2 hydrogenation to methanol [J ] . Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2022 , 641 : 128535 .
SHEN C Y , SUN K H , ZOU R , et al . CO 2 hydrogenation to methanol on indium oxide-supported rhenium catalysts: The effects of size [J ] . ACS Catalysis , 2022 , 12 ( 20 ): 12658 - 12669 .
YANG C S , PEI C L , LUO R , et al . Strong electronic oxide-support interaction over In 2 O 3 /ZrO 2 for highly selective CO 2 hydrogenation to methanol [J ] . Journal of the American Chemical Society , 2020 , 142 ( 46 ): 19523 - 19531 .
DHAKSHINAMOORTHY A , NAVALÓN S , PRIMO A , et al . Selective gas-phase hydrogenation of CO 2 to methanol catalysed by metal-organic frameworks [J ] . Angewandte Chemie International Edition , 2024 , 63 ( 3 ): e202311241 .
CHAI Y C , QIN B , LI B N , et al . Zeolite-encaged mononuclear copper centers catalyze CO 2 selective hydrogenation to methanol [J ] . National Science Review , 2023 , 10 ( 7 ): nwad043 .
NIU M M , JIANG Y N , ZHANG X , et al . Promoted stability of Cu/ZnO/Al 2 O 3 catalysts formethanol production from CO 2 hydrogenation by La modification [J ] . Journal of Fuel Chemistry and Technology , 2024 , 52 ( 8 ): 1095 - 1102 .
LI H J , WANG L , GAO X H , et al . Cu/ZnO/Al 2 O 3 catalyst modulated by zirconia with enhanced performance in CO 2 hydrogenation to methanol [J ] . Industrial & Engineering Chemistry Research , 2022 , 61 ( 29 ): 10446 - 10454 .
ZHONG J W , YANG X F , WU Z L , et al . State of the art and perspectives in heterogeneous catalysis of CO 2 hydrogenation to methanol [J ] . Chemical Society Reviews , 2020 , 49 ( 5 ): 1385 - 1413 .
GRACIANI J , MUDIYANSELAGE K , XU F , et al . Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO 2 [J ] . Science , 2014 , 345 ( 6196 ): 546 - 550 .
BONURA G , ARENA F , MEZZATESTA G , et al . Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO 2 -to-methanol hydrogenation reaction [J ] . Catalysis Today , 2011 , 171 ( 1 ): 251 - 256 .
ARENA F , MEZZATESTA G , ZAFARANA G , et al . Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO 2 hydrogenation [J ] . Journal of Catalysis , 2013 , 300 : 141 - 151 .
KOU J W , CHENG S Y , WANG J W , et al . Synthesis and characterization of Cu/Cr hydrotalcite-like compounds and their highly efficient application in catalytic synthesis of benzoin methyl ether [J ] . Chemical Engineering Journal , 2017 , 323 : 565 - 571 .
CRIVELLO M , PÉREZ C , FERNÁNDEZ J , et al . Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol [J ] . Applied Catalysis A: General , 2007 , 317 ( 1 ): 11 - 19 .
MEN Y H , FANG X , GU Q F , et al . Synthesis of Ni 5 Ga 3 catalyst by Hydrotalcite-like compound (HTlc) precursors for CO 2 hydrogenation to methanol [J ] . Applied Catalysis B: Environmental , 2020 , 275 : 119067 .
KÜHL S , TARASOV A , ZANDER S , et al . Cu-based catalyst resulting from a Cu, Zn, Al Hydrotalcite-like compound: A microstructural, thermoanalytical, and in situ XAS study [J ] . Chemistry-A European Journal , 2014 , 20 ( 13 ): 3782 - 3792 .
GAO P , LI F , ZHAN H J , et al . Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO 2 hydrogenation to methanol [J ] . Journal of Catalysis , 2013 , 298 : 51 - 60 .
MARCOS F C F , ASSAF J M , ASSAF E M . CuFe and CuCo supported on pillared clay as catalysts for CO 2 hydrogenation into value-added products in one-step [J ] . Molecular Catalysis , 2018 , 458 : 297 - 306 .
LIU Y , ZHANG X H , CHEN L G , et al . A Cu-ZnO-Al 2 O 3 catalyst with oxygen vacancy for efficient hydrodeoxygenation of lignin-derived guaiacol to hydrocarbons [J ] . Chemical Engineering Science , 2024 , 285 : 119616 .
YU J F , YANG M , ZHANG J X , et al . Stabilizing Cu + in Cu/SiO 2 catalysts with a shattuckite-like structure boosts CO 2 hydrogenation into methanol [J ] . ACS Catalysis , 2020 , 10 ( 24 ): 14694 - 14706 .
SHIN J , JUNG U , KIM J , et al . Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl 2 O 4 -supported Ru-based catalysts for ammonia decomposition [J ] . Applied Catalysis B: Environment and Energy , 2024 , 340 : 123234 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构