浏览全部资源
扫码关注微信
1.中海油化工与新材料科学研究院(北京)有限公司,北京 102219
2.中国科学院 上海高等研究院 中国科学院低碳转化科学与工程重点实验室,上海 201210
张培培(1989—),博士,副教授,研究方向为CO2加氢制高附加值化学品及其技术开发,E-mail:zhangpp15@cnooc.com.cn。
夏林(1986—),本科,高级实验师,研究方向CO2加氢制甲醇及甲醇制氢,E-mail:xial@sari.ac.cn。
收稿日期:2024-11-27,
修回日期:2024-12-25,
网络出版日期:2025-02-21,
移动端阅览
张培培,辛靖,李思漩等.Pd掺杂方式对Cu/ZnO低温催化CO2加氢制甲醇性能的影响[J].低碳化学与化工,
ZHANG Peipei,XIN Jing,LI Sixuan,et al.Effect of Pd doping method on low temperature catalytic performance of Cu/ZnO for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,
张培培,辛靖,李思漩等.Pd掺杂方式对Cu/ZnO低温催化CO2加氢制甲醇性能的影响[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240469.
ZHANG Peipei,XIN Jing,LI Sixuan,et al.Effect of Pd doping method on low temperature catalytic performance of Cu/ZnO for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240469.
CO
2
加氢制甲醇是CO
2
资源化利用的重要途径之一,Cu/ZnO催化剂因具有独特的催化性能而备受关注。采用共沉淀法、浸渍法和机械混合法制备了一系列掺杂Pd的Cu/ZnO催化剂,利用ICP-OES、N
2
物理吸/脱附和XRD等方法对催化剂进行了表征,并在温度为170~250 ℃、压力为5.0 MPa和气体空速为4000 mL/(g·h)的条件下对各催化剂催化性能进行了测试,深入研究了不同Pd掺杂方式对催化剂的结构、形貌和催化性能的影响。结果表明,共沉淀法制备的Pd-Cu/ZnO-C催化剂相对于未掺杂的Cu/ZnO催化剂,具有更高的CO
2
转化率、甲醇选择性和甲醇时空收率。共沉淀法促使Pd在催化剂中均匀分布且高度分散,贵金属Pd与Cu的协同催化作用有效增强了氢解离和溢流性能。此外,Pd-Cu/ZnO-C催化剂的粒径较小、比表面积较大且还原性能较为优异,从而有效降低了反应活化能。在170 ℃和190 ℃的低温下,Pd-Cu/ZnO-C催化剂的CO
2
转化率分别为5.5%和8.9%,甲醇选择性分别为82.2%和74.9%,甲醇时空收率分别为0.058 g/(g·h)和0.088 g/(g·h)。
CO
2
hydrogenation to methanol is one of promising route for CO
2
utilization. Cu/ZnO catalysts have garnered considerable attention due to their unique catalytic properties. A series of Pd doping Cu/ZnO catalysts were prepared by co-precipitation
impregnation
and mechanical mixing methods. The catalysts were characterized by ICP-OES
N
2
physical adsorption/desorption
XRD and so on. The catalytic performances of each catalyst were tested under the conditions of temperature from 170 ℃ to 250 ℃
pressure of 3.0 MPa and gas space velocity of 4000 mL/(g·h)
and the effects of different Pd doping methods on the structures
morphologies and performances of Cu/ZnO catalysts were studied. The results show that Pd-Cu/ZnO-C catalyst prepared by co-precipitation method exhibits hig
her CO
2
conversion rate
methanol selectivity and methanol space-time yield compared to the undoped Cu/ZnO catalyst. The co-precipitation method facilitates the uniform distribution and high dispersion of Pd in the catalyst. The synergistic catalysis between noble metal Pd and Cu effectively enhances hydrogen dissociation and spillover capabilities. Furthermore
the Pd-Cu/ZnO-C catalyst has small particle sizes
large specific surface areas and excellent reduction abilities
leading to a reduction of apparent activation energy. At low reaction temperatures of 170 ℃ and 190 ℃
CO
2
conversion rates of Pd-Cu/ZnO-C catalysts are 5.5% and 8.9%
respectively
with methanol selectivities of 82.2% and 74.9% and methanol space-time yields of 0.058 g/(g·h) and 0.088 g/(g·h)
respectively.
PICETTI R , JUEL R , MILNER J , et al . Effects on child and adolescent health of climate change mitigation policies: A systematic review of modelling studies [J ] . Environmental Research , 2023 , 238 : 117102 .
OLAH G A . Beyond oil and gas: The methanol economy [J ] . Angewandte Chemie International Edition , 2005 , 44 ( 18 ): 2636 - 2639 .
TABIBIAN S S , SHARIFZADEH M . Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol [J ] . Renewable and Sustainable Energy Reviews , 2023 , 179 : 113281 - 113308 .
GARCIA G , ARRIOLA E , CHEN W H , et al . A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability [J ] . Energy , 2021 , 217 : 119384 - 119401 .
李自琴 , 王康洲 , 高新华 , 等 . CO 2 加氢制高碳 α -烯烃Fe基催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 11 - 21 .
LI Z Q , WANG K Z , GAO X H , et al . Research progress on Fe-based catalysts for CO 2 hydrogenation to high carbon α -olefins . [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 11 - 21 .
霍凯旋 , 王阳 , 吴明铂 . CO 2 加氢制甲醇用Cu基催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 22 - 31 .
HUO K X , WANG Y , WU M B . Research progress on Cu-based catalysts for CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 22 - 31 .
ZHAO H B , LIU X C , ZENG C Y , et al . Thermochemical CO 2 reduction to methanol over metal-based single-atom catalysts (SACs): Outlook and challenges for developments [J ] . Journal of the American Chemical Society , 2024 , 146 ( 34 ): 23649 - 23662 .
LI H J , FANG W , WANG L X , et al . Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO 2 hydrogenation to methanol [J ] . The Innovation , 2023 , 4 ( 4 ): 100445 .
GAO P , ZHONG L S , ZHANG L N , et al . Yttrium oxide modified Cu/ZnO/Al 2 O 3 catalysts via hydrotalcite-like precursors for CO 2 hydrogenation to methanol [J ] . Catalysis Science Technology , 2015 , 5 ( 9 ): 4365 - 4377 .
CHEN F , ZHANG P P , ZENG Y , et al . Vapor-phase low-temperature methanol synthesis from CO 2 -containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method [J ] . Applied Catalysis B: Environmental , 2020 , 279 : 119382 .
朱怡澄 , 马宏方 , 钱炜鑫 , 等 . 钴、锆共掺杂对铟基催化剂二氧化碳加氢制甲醇性能的影响 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 115 - 122 .
ZHU Y C , MA H F , QIAN W X , et al . Effects of co-doping of Co and Zr on performances of In-based catalysts for carbon dioxide hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 115 - 122 .
ZHONG J W , YANG X F , WU Z L , et al . State of the art and perspectives in heterogeneous catalysis of CO 2 hydrogenation to methanol [J ] . Chemical Society Reviews , 2020 , 49 ( 5 ): 1385 - 1413 .
LAM E , NOH G , LARMIER K , et al . CO 2 hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH 3 OH selectivity compared to Cu/ZnO/Al 2 O 3 [J ] . Journal of Catalysis , 2021 , 394 : 266 - 272 .
ZHAO H B , YU R F , MA S C , et al . The role of Cu 1 -O 3 species in single-atom Cu/ZrO 2 catalyst for CO 2 hydrogenation [J ] . Nature Catalysis , 2022 , 5 : 818 - 831 .
LI H J , XIAO Y H , XIAO J L , et al . Selective hydrogenation of CO 2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts [J ] . Chinese Journal of Catalysis , 2023 , 54 : 178 - 187 .
张兰 , 陈标华 , 王宁 . CuZn/CeO 2 催化剂在CO 2 加氢制甲醇中的应用研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 100 - 106 .
ZHANG L , CHEN B H , WANG N . Study on application of CuZn/CeO 2 catalysts in CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 100 - 106 .
周向坤 , 王明瑞 , 王浩 , 等 . 不同形貌ZnO催化CO 2 加氢性能研究 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 41 - 48 .
ZHOU X K , WANG M R , WANG H , et al . Study on catalytic performance of ZnO with different morphologies for CO 2 hydrogenation [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 41 - 48 .
JIANG X , NIE X W , WANG X X , et al . Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO 2 hydrogenation [J ] . Journal of Catalysis , 2019 , 369 : 21 - 32 .
TADA S , WATANABE F , KIYOTA K , et al . Ag addition to CuO-ZrO 2 catalysts promotes methanol synthesis via CO 2 hydrogenation [J ] . Journal of Catalysis , 2017 , 351 : 107 - 118 .
XIE G M , JIN R R , REN P J , et al . Boosting CO 2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts [J ] . Applied Catalysis B: Environmental , 2023 , 324 : 122233 .
HU B , YIN Y Z , LIU G L , et al . Hydrogen spillover enabled active Cu sites for methanol synthesis from CO 2 hydrogenation over Pd doped CuZn catalysts [J ] . Journal of Catalysis , 2018 , 359 : 17 - 26 .
PAN H X , MA B R , ZHOU L H , et al . Highly efficient CuPd 0.1 / γ -Al 2 O 3 catalyst with isolated Pd species for CO 2 hydrogenation to methanol [J ] . ACS Sustainable Chemistry & Engineering , 2023 , 11 ( 19 ): 7489 - 7499 .
ZHANG P P , ARAKI Y , FENG X B , et al . Urea-derived Cu/ZnO catalyst being dried by supercritical CO 2 for low-temperature methanol synthesis [J ] . Fuel , 2020 , 268 : 117213 .
KARIM W , SPREAFICO C , KLEIBERT A , et al . Catalyst support effects on hydrogen spillover [J ] . Nature , 2017 , 541 : 68 - 71 .
LIU L C , CORMA A . Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles [J ] . Chemical Reviews , 2018 , 118 ( 10 ): 4981 - 5079 .
LI H J , ZHANG P P , GUO L S , et al . A well-defined core-shell-structured capsule catalyst for direct conversion of CO 2 into liquefied petroleum gas [J ] . ChemSusChem , 2020 , 13 ( 8 ): 2060 - 2065 .
XU J H , XIONG S , LIU X Y , et al . Methanol synthesis from CO 2 and H 2 over Pd/ZnO/Al 2 O 3 : Catalyst structure dependence of methanol selectivity [J ] . Applied Catalysis A: General , 2016 , 514 : 51 - 59 .
HUANG C J , ZHANG S N , WANG W B , et al . Modulation of electronic metal-support interaction between Cu and ZnO by Er for effective low-temperature CO 2 hydrogenation to methanol [J ] . ACS Catalysis , 2024 , 14 ( 3 ): 1324 - 1335 .
GAU A , HACK J , MAEDA N , et al . Operando spectroscopic monitoring of active species in CO 2 hydrogenation at elevated pressure and temperature: Steady-state versus transient analysis [J ] . Energy & Fuels , 2021 , 35 : 15243 - 15246 .
HU J T , YU L , DENG J , et al . Sulfur vacancy-rich MoS 2 as a catalyst for the hydrogenation of CO 2 to methanol [J ] . Nature Catalysis , 2021 , 4 : 242 - 250 .
LI J M M , CHEN C P , AYVALI T , et al . CO 2 hydrogenation to methanol over catalysts derived from single cationic Layer CuZnGa LDH precursors [J ] . ACS Catalysis , 2018 , 8 : 4390 - 4401 .
ZHAO F G , FAN L L , XU K J , et al . Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO 2 hydrogenation to methanol [J ] . Journal of CO 2 Utilization , 2019 , 33 : 222 - 232 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构