浏览全部资源
扫码关注微信
1.西南化工研究设计院有限公司 工业排放气综合利用国家重点实验室,国家碳一化学工程技术研究中心, 四川 成都 610225
2.内蒙古君正氯碱化工技术研究院,内蒙古 乌海 016040
吴子波(1985—),硕士,高级工程师,研究方向为碳一化工设计,E-mail:155338531@qq.com。
收稿日期:2024-10-27,
修回日期:2024-12-19,
纸质出版日期:2025-03-25
移动端阅览
吴子波,张敬宇,吴路平等.不同绿氢耦合生物质气化制绿色甲醇工艺经济性分析[J].低碳化学与化工,2025,50(03):97-105.
WU Zibo,ZHANG Jingyu,WU Luping,et al.Economic analysis of different processes of green hydrogen coupled with biomass gasification for green methanol production[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):97-105.
吴子波,张敬宇,吴路平等.不同绿氢耦合生物质气化制绿色甲醇工艺经济性分析[J].低碳化学与化工,2025,50(03):97-105. DOI: 10.12434/j.issn.2097-2547.20240435.
WU Zibo,ZHANG Jingyu,WU Luping,et al.Economic analysis of different processes of green hydrogen coupled with biomass gasification for green methanol production[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):97-105. DOI: 10.12434/j.issn.2097-2547.20240435.
为研究不同绿氢耦合生物质气化制绿色甲醇工艺的经济性,以较有代表性的3种工艺(催化转化甲醇合成工艺、非催化转化甲醇合成工艺和弛放气提氢循环甲醇合成工艺)为研究对象,分别从固定资产投资、公用工程消耗和总成本费用对3种工艺进行了分析。结果表明,催化转化甲醇合成工艺、非催化转化甲醇合成工艺和弛放气提氢循环甲醇合成工艺固定资产投资依次降低,电解水制氢工序是3种工艺中投资最高的工序,优化该工序配置是降低投资的关键;非催化转化甲醇合成工艺副产蒸汽量最多,将生物质气化合成气出口高温气与转化反应气进行热量耦合是节能降耗的关键;一定条件下弛放气提氢循环甲醇合成工艺具有相对最高的经济性,当电价降至0.2 CNY/(kW·h)以内时,该工艺的总成本费用可低于2684.24 CNY/t。
To study the economy of different processes of green hydrogen coupled with biomass gasification for green methanol production
three representative processes (catalytic conversion methanol synthesis process
non-catalytic conversion methanol synthesis process and methanol synthesis process with hydrogen extraction from purge gas for recycling) were taken as the research objects. Analyses were conducted on the three processes from fixed asset investments
utility consumptions and total costs
respectively. The results show that the fixed asset investments of catalytic conversion methanol synthesis process
non-catalytic conversion methanol synthesis process and methanol synthesis process with hydrogen extraction from purge gas for recycling decrease in turn. The electrolytic water hydrogen production process is the process with the highest investment in the three processes
and optimizing configuration of the process is the key to reducing investments. The non-catalytic conversion methanol synthesis process has the highest by-product steam output amounts
and heat coupling between the high-temperature gas of biomass gasification syngas and the conversion reaction gas is the key for energy-saving and cost-reducing. Under certain conditions
methanol synthesis process with hydrogen extraction from purge gas for recycling has relative highest economy
and the total cost of the process can lower than 2684.24 CNY/t when the electricity price is reduced to less than 0.2 CNY/(kW·h).
余碧莹 , 赵光普 , 安润颖 , 等 . 碳中和目标下中国碳排放路径研究 [J ] . 北京理工大学学报(社会科学版) , 2021 , 23 ( 2 ): 17 - 24 .
YU B Y , ZHAO G P , AN R Y . et al . Research on China’s CO 2 emission pathway under carbon neutral target [J ] . Journal of Beijing Institute of Technology (Social Sciences Edition) , 2021 , 23 ( 2 ): 17 - 24 .
舒斌 , 陈建宏 , 熊健 , 等 . 碳中和目标下推动绿色甲醇发展的必要性分析 [J ] . 化工进展 , 2023 , 42 ( 9 ): 4471 - 4478 .
SHU B , CHEN J H , XIONG J . et al . Necessity analysis of promoting the development of green methanol [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 9 ): 4471 - 4478 .
周爱国 , 郑家乐 , 杨川箬 , 等 . 直接空气二氧化碳捕集技术工业化进展 [J ] . 化工进展 , 2024 , 43 ( 6 ): 2928 - 2939 .
ZHOU A G , ZHENG J L , YANG C R , et al . Industrial progress in direct air CO 2 capture technology [J ] . Chemical Industry and Engineering Progress , 2024 , 43 ( 6 ): 2928 - 2939 .
American Physical Society . Assessment casts doubt on utility of direct air capture of CO 2 [EB/OL ] . ( 2011-06-05 )[ 2024-10-27 ] . http://aps.org/publications/apsnews/201106/directaircaptur.cfm http://aps.org/publications/apsnews/201106/directaircaptur.cfm .
AZARABADI H , LACKNER K S . A sorbent-focused techno-economic analysis of direct air capture [J ] . Applied Energy , 2019 , 250 : 959 - 975 .
SUTHERLAND B R . Pricing CO 2 direct air capture [J ] . Joule , 2019 , 3 ( 7 ): 1571 - 1573 .
SAFARIAN S , UNNTHORSSON R , RICHTER C . Performance investigation of biomass gasification for syngas and hydrogen production using Aspen Plus [J ] . Open Journal of Modelling and Simulation , 2022 , 10 ( 2 ): 71 - 87 .
MORETTI L , ARPINO F , CORTELLESSA G , et al . Analytical and numerical modelling of biomass gasification in downdraft gasifiers [J ] . Journal of Physics: Conference Series , 2022 , 2177 : 12028 .
DUTTA A , BAIN R L , BIDDY M J . Techno-economics of the production of mixed alcohols from lignocellulosic biomass via high-temperature gasification [J ] . Environmental Progress Sustainable Energy , 2010 , 29 ( 2 ): 163 - 174 .
NING S Y , JIA S , YING H , et al . Hydrogen-rich syngas produced by catalytic steam gasification of corncob char [J ] . Biomass and Bioenergy , 2018 , 117 : 131 - 136 .
UMEKI K , NAMIOKA T , YOSHIKAWA K . Analysis of an updraft biomass gasifier with high temperature steam using a numerical model [J ] . Applied Energy , 2015 , 90 ( 1 ): 38 - 45 .
UMEKI K , YAMAMOTO K , NAMIOKA T , et al . High temperature steam-only gasification of woody biomass [J ] . Applied Energy , 2010 , 87 ( 3 ): 791 - 798 .
俞红梅 , 邵志刚 , 侯明 , 等 . 电解水制氢技术研究进展与发展建议 [J ] . 中国工程科学 , 2021 , 23 ( 2 ): 146 - 152 .
YU H M , SHAO Z G , HOU M . et al . Hydrogen production by water electrolysis progress and suggestions [J ] . Strategic Study of Chinese Academy of Engineering , 2021 , 23 ( 2 ): 146 - 152 .
马晓锋 , 张舒涵 , 何勇 , 等 . PEM电解水制氢技术的研究现状与应用展望 [J ] . 太阳能学报 , 2022 , 43 ( 6 ): 420 - 427 .
MA X F , ZHANG S H , HE Y , et al . Research status and application prospect of PEM electrolysis water technology for hydrogen production [J ] . Acta Energiae Solaris Sinica , 2022 , 43 ( 6 ): 420 - 427 .
陈颖 . 电解水制氢技术的研究现状及未来发展趋势 [J ] . 太阳能 , 2024 , 1 ( 1 ): 5 - 11 .
CHEN Y . Research status and future development trend of hydrogen production by water electrolysis [J ] . Solar Energy , 2024 , 1 ( 1 ): 5 - 11 .
JIANG Z L , SONG S J , ZHENG X B , et al . Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H 2 production [J ] . Journal of the American Chemical Society , 2022 , 144 ( 42 ): 19619 - 19626 .
LI G , GAO R , QIU Z Y , et al . Highly dispersed ruthenium nanoparticles on nitrogen doped carbon toward efficient hydrogen evolution in both alkaline and acidic electrolytes [J ] . RSC Advances , 2022 , 12 ( 22 ): 13932 - 13937 .
ZHAO S A , STOCKS A , RASIMICK B , et al . Highly active durable dispersed iridium nanocatalysts for PEM water electrolyzers [J ] . Journal of the Electrochemical Society , 2018 , 165 ( 2 ): 82 - 89 .
HOLZAPFEL P , BÜHLER M , VAN PHAM C , et al . Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis [J ] . Electrochemistry Communications , 2020 , 110 : 106640 .
李雪琴 , 刘鹏 , 吴幼青 , 等 . 生物质气化技术的发展现状及展望 [J ] . 林产化学与工业 , 2022 , 42 ( 5 ): 113 - 121 .
LI X Q , LIU P , WU Y Q , et al . Development status and prospect of biomass gasification technology [J ] . Chemistry and Industry of Forest Products , 2022 , 42 ( 5 ): 113 - 121 .
王良辉 . 焦炉气制甲醇方案的比较与选择 [J ] . 化肥设计 , 2004 , 42 ( 6 ): 22 - 28 .
WANG L H . Comparison of scheme and its selection for methanol produced by coke-oven gas [J ] . Chemical Fertilizer Design , 2004 , 42 ( 6 ): 22 - 28 .
尹滨宁 . 焦炉气制甲醇非催化工艺探讨 [J ] . 辽宁化工 , 2011 , 40 ( 3 ): 296 - 298 .
YIN B N . Discussion on preparation of methanol from coke oven gas with non-catalytic conversion process [J ] . Liaoning Chemical Industry , 2011 , 40 ( 3 ): 296 - 298 .
宋素芳 , 段滋华 , 张永发 . 焦炉煤气制合成气反应器数值模拟 [J ] . 化学工程 , 2009 , 37 ( 11 ): 36 - 39 .
SONG S F , DUAN Z H , ZHANG Y F . Numerical simulation on reactor of coke oven gas to synthesis gas [J ] . Chemical and Engineering , 2009 , 37 ( 11 ): 36 - 39 .
段宗仁 . 焦炉气常压非催化转化加转炉气制合成气的应用 [J ] . 中氮肥 , 2014 , 11 ( 6 ): 14 - 16 .
DUANG Z R . Application of coke oven gas atmospheric pressure non-catalytic conversion plus converter gas to syngas [J ] . M-Sized Nitrogenous Fertilizer Progress , 2014 , 11 ( 6 ): 14 - 16 .
王军 . 焦炉气纯氧非催化部分氧化法制甲醇装置运行工艺优化研究 [J ] . 石油化工应用 , 2016 , 35 ( 10 ): 149 - 153 .
WANG J . Research on the optimization of the operation process of the coke oven gas pure oxygen non-catalytic partial oxidation to methanol plant [J ] . Petrochemical Industry Application , 2016 , 35 ( 10 ): 149 - 153 .
王军 . 焦炉气纯氧非催化部分氧化法转化炉优化研究 [J ] . 石油化工应用 , 2016 , 35 ( 11 ): 143 - 147 .
WANG J . Optimization of coke oven gas pure oxygen non-catalytic partial oxidation reformer [J ] . Petrochemical Industry Application , 2016 , 35 ( 11 ): 143 - 147 .
王辅臣 , 代正华 , 刘海峰 , 等 . 焦炉气非催化部分氧化与催化部分氧化制合成气工艺比较 [J ] . 煤化工 , 2006 , 123 ( 2 ): 5 - 9 .
WANG F C , DAI Z H , LIU H F . et al . COG based syngas production process with catalytic and non-catalytic partial oxidation [J ] . Coal Chemical Industry , 2006 , 123 ( 2 ): 5 - 9 .
叶鑫 , 宫万福 , 吕建宁 . 焦炉气催化纯氧转化的PRO/II模拟计算及分析 [J ] . 煤化工 , 2009 , 141 ( 2 ): 9 - 13 .
YE X , GONG W F , LV J N . Simulation and analysis by PRO/II on pure oxygen catalytic reforming for COG to methanol technology [J ] . Coal Chemical Industry , 2009 , 141 ( 2 ): 9 - 13 .
代正华 , 王辅臣 , 刘海峰 , 等 . 天然气部分氧化炉的数值模拟 [J ] . 化学工程 , 2005 , 33 ( 3 ): 13 - 16 .
DAI Z H , WANG F C , LIU H F , et al . Numerical simulation of natural gas partial oxidation gasifier [J ] . Chemical and Engineering , 2005 , 33 ( 3 ): 13 - 16 .
杨跃平 , 阎承信 . 焦炉煤气利用技术 [M ] . 北京 : 化学工业出版社 , 2021 .
YANG Y P , YAN C X . Coke oven gas utilization technology [M ] . Beijing : Chemical Industry Press , 2021 .
潘世均 , 周江宁 , 王良辉 , 等 . 甲醇合成塔 : 1310662C [P ] . 2007-04-18 .
PANG S J , ZHOU J N , WANG L H , et al . Methanol synthesis tower : 1310662C [P ] . 2007-04-18 .
国家发展改革委建设部 . 建设项目经济评价方法与参数(第三版) [M ] . 北京 : 中国计划出版社 , 2006 .
Ministry of Construction, National Development and Reform Commission . Methods and parameters of economic evaluation of construction projects [M ] . 3rd ed . Beijing : China Planning Press , 2006 .
闫泽 . 二氧化碳加氢制甲醇经济性及减碳效益测算分析 [J ] . 化学工业 , 2022 , 40 ( 2 ): 36 - 41 .
YAN Z . Economic efficiency and carbon reduction benefit analysis of CO 2 hydrogenation to methanol [J ] . Chemical Industry , 2022 , 40 ( 2 ): 36 - 41 .
武永光 . 二氧化碳加氢制甲醇暨新能源制氢工业化进展 [J ] . 化学工业 , 2021 , 39 ( 2 ): 36 - 39 .
WU Y G . Advances in industrialization for CO 2 hydrogenation to methanol and hydrogen production from new energy [J ] . Chemical Industry , 2021 , 39 ( 2 ): 36 - 39 .
吴子波 , 蹇守华 , 吴路平 . 不同合成工艺的二氧化碳催化加氢制甲醇装置经济性分析 [J ] . 低碳化学与化工 , 2023 , 48 ( 6 ): 60 - 66 .
WU Z B , JIAN S H , WU L P . Plants economic analysis of catalytic hydrogenation of CO 2 to methanol with different synthesis processes [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 6 ): 60 - 66 .
徐月亭 , 代正华 , 李超 , 等 . 天然气非催化部分氧化转化炉模拟 [J ] . 高等化学工程学报 , 2014 , 28 ( 6 ): 1249 - 1254 .
XU Y T , DAI Z H , LI C . et al . Simulations studies on non-catalytic partial oxidation reformer for natural gas [J ] . Journal of Chemical Engineering of Chinese Universities , 2014 , 28 ( 6 ): 1249 - 1254 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构