浏览全部资源
扫码关注微信
1.上海交通大学 智慧能源创新学院,上海 200240
2.中国船舶集团有限公司第七一一研究所,上海 201108
3.上海交通大学 机械与动力工程学院,上海 200240
邱微(2000—),硕士研究生,研究方向为碳捕集催化解吸技术,E-mail:qw2339149409@sjtu.edu.cn。
张毅然(1992—),博士,副教授,研究方向为碳捕集与利用,E-mail:zhangyiran@sjtu.edu.cn。
网络出版日期:2025-01-13,
收稿日期:2024-10-05,
修回日期:2024-10-26,
移动端阅览
邱微, 宁一睿, 赵澍, 等. 双金属负载氧化铝固体酸催化CO2有机胺富液解吸性能[J/OL]. 低碳化学与化工, 2025,1-10.
QIU WEI, NING YIRUI, ZHAO SHU, et al. Catalytic performances of bimetal-loaded
邱微, 宁一睿, 赵澍, 等. 双金属负载氧化铝固体酸催化CO2有机胺富液解吸性能[J/OL]. 低碳化学与化工, 2025,1-10. DOI: 10.12434/j.issn.2097-2547.20240407.
QIU WEI, NING YIRUI, ZHAO SHU, et al. Catalytic performances of bimetal-loaded
有机胺溶液吸收法是一种前景广阔的CO
2
捕集技术,但高再生能耗导致该方法的成本较高。开发高催化活性和稳定性的固体酸催化剂是降低有机胺溶液再生能耗的重要途径。以
γ
-Al
2
O
3
为载体,采用浸渍法制备了一系列双金属负载氧化铝固体酸催化剂ZrM/
γ
-Al
2
O
3
(M = Ni、Fe、Ce或Cu,Zr和M质量分数均为10%),并对其在富CO
2
单乙醇胺溶液(MEA富液)中的催化解吸性能和作用机理等进行了研究。结果表明,在解吸温度为91 ℃、搅拌速率为500 r/min和MEA富液CO
2
负载量为0.5 mol/mol的条件下,ZrNi/
γ
-Al
2
O
3
具有最优的催化解吸性能,其CO
2
解吸速率峰值、CO
2
解吸量和相对能耗(与未加入催化剂的空白组相比)分别为1.92 mmol/min、46.53 mmol和55.04%。在吸收温度为40 °C、解吸温度为92 °C下经历8次吸收-解吸循环后,ZrNi/
γ
-Al
2
O
3
仍具有较好的催化解吸性能,其作用下MEA富液的再生能耗较空白组仍降低了23%左右,因此ZrNi/
γ
-Al
2
O
3
循环稳定性良好。XRD、N
2
吸/脱附、NH
3
-TPD和Py-IR等表征结果显示,ZrM/
γ
-Al
2
O
3
具有适宜的织构性质和酸性,其丰富的B酸和L酸位点在MEA富液的催化解吸过程中发挥了关键作用。
The amine-based absorption method is a promising technology for CO
2
capture
but the high regeneration energy consumption increases its costs. Developing solid acid catalysts with high catalytic activity and stability is a key approach to reducing the regeneration energy consumption of amine solutions. A series of bimetal-loaded
γ
-Al
2
O
3
solid acid catalysts ZrM/
γ
-Al
2
O
3
(M = Ni
Fe
Ce or Cu
mass fractions of Zr and M both are 10%) were prepared by loading two types of metals on the support
γ
-Al
2
O
3
usi
ng the impregnation method. And the catalytic desorption performances and mechanisms of the catalysts in monoethanolamine rich solution with CO
2
(MEA rich solution) were investigated. The results show that under the conditions of desorption temperature of 91 ℃
stirring rate of 500 r/min and CO
2
loading of 0.5 mol/mol
ZrNi/
γ
-Al
2
O
3
exhibits the most favorable catalytic desorption performance. Specifically
the peak CO
2
desorption rate
CO
2
total desorption amount and relative energy consumption (compared to the blank group without catalyst) catalyzed by ZrNi/
γ
-Al
2
O
3
are 1.92 mmol/min
46.53 mmol and 55.04%
respectively. After eight absorption-desorption cycles at 40 ℃ for absorption and 92 ℃ for desorption
ZrNi/
γ
-Al
2
O
3
maintains good catalytic desorption performance with reducing the regeneration energy consumption of MEA rich solution by approximately 23% compared to the blank group. This indicates that ZrNi/
γ
-Al
2
O
3
possesses good cyclic stability. The characterization results of XRD
N
2
adsorption/desorption
NH
3
-TPD and Py-IR show that ZrM/
γ
-Al
2
O
3
catalysts demostrates suitable textural properties and acidity. The abundant Brønsted and Lewis acid sites play critical role in the catalytic desorption process of MEA rich solutions.
CO2捕集催化解吸双金属负载氧化铝固体酸催化剂解吸机理
CO2 capturecatalytic desorptionbimetallic supported γ-Al2O3solid acid catalystsdesorption mechanism
IPCC. Climate Change 2023 [R]. Geneva: Intergovernmental Panel on Climate Change, 2023.
TAN Z, ZHANG S S, ZHAO F F, et al. SnO2/ATP catalyst enabling energy-efficient and green amine-based CO2 capture [J]. Chemical Engineering Journal, 2023, 453: 139801.
申长俊, 陆诗建, 刘玲, 等. 船舶尾气净化技术研究进展[J]. 低碳化学与化工, 2024, 49(4): 98-106.
SHEN C J, LU S J, LIU L, et al. Research progress of ship exhaust purification technologies [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(4): 98-106.
陈家伟, 杨柳, 李新令, 等. MAP-DMSO-PMDETA三元相变吸收剂的CO2捕集性能[J]. 化工环保, 2024, 44(2): 213-220.
CHEN J W, YANG L, LI X L, et al. CO2 capture capability of MAP-DMSO-PMDETA ternary phase-change absorbent [J]. Environmental Protection of Chemical Industry, 2024, 44(2): 213-220.
陆诗建, 方梦祥, 陈浮, 等. AEP-DPA-CuO相变纳米流体捕集烟气中CO2 [J]. 化工环保, 2021, 41(6): 724-730.
LU S J, FANG M X, CHEN F, et al. Capture of CO2 in flue gas by AEP-DPA-CuO phase change nanofluid [J]. Environmental Protection of Chemical Industry, 2021, 41(6): 724-730.
李亚清, 宋沆, 张玉涛, 等. 醇胺法吸收烟道气中二氧化碳的研究进展[J/OL]. 低碳化学与化工: 1-11[2024-10-05]. DOI: 10.12434/i.issn.2097-2547.20230352http://dx.doi.org/10.12434/i.issn.2097-2547.20230352.
LI Y Q, SONG H, ZHANG Y T, et al. Research progress on absorption of carbon dioxide in flue gas by alcohol amine method [J/OL]. Low-Carbon Chemistry and Chemical Engineering: 1-11[2024-10-05]. DOI: 10.12434/i.issn.2097-2547.20230352http://dx.doi.org/10.12434/i.issn.2097-2547.20230352.
XING L, LI M, LI M Y, et al. MOF-derived robust and synergetic acid sites inducing C—N bond disruption for energy-efficient CO2 desorption [J]. Environmental Science & Technology, 2022, 56(24): 17936-17945.
XING L, WEI K X, LI Y C, et al. TiO2 coating strategy for robust catalysis of the metal-organic framework toward energy-efficient CO2 capture [J]. Environmental Science & Technology, 2021, 55: 11216-11224.
刘竞文, 孙乐乐, 刘健, 等. 有机胺CO2吸收液催化解吸研究进展[J]. 低碳化学与化工, 2025, 50(1): 120-131.
LIU J W, SUN L L, LIU J, et al. Research progress on catalytic desorption of organic amine CO2 absorption liquids [J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50(1): 120-131.
SHI H, NAAMI A, IDEM R, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents [J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50.
ZHANG X W, ZHANG X, LIU H L, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts [J]. Applied Energy, 2017, 202: 673-684.
BHATTI U H, KAZMI W W, MIN G H, et al. Facilely synthesized M-montmorillonite (M = Cr, Fe, and Co) as efficient catalysts for enhancing CO2 desorption from amine solution [J]. Industrial & Engineering Chemistry Research, 2021, 60(36): 13318-13325.
GAO H X, HUANG Y F, ZHANG X W, et al. Catalytic performance and mechanism of SO<math id="M35"><msubsup><mrow/><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144144&type=3.64066648https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144145&type=2.37066650/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution [J]. Applied Energy, 2020, 259: 114179.
WEI K X, XING L, LI Y C, et al. Heteropolyacid modified cerium-based MOFs catalyst for amine solution regeneration in CO2 capture [J]. Separation and Purification Technology, 2022, 293: 121144.
ZHANG X W, HUANG Y F, GAO H X, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process [J]. Applied Energy, 2019, 240: 827-841.
LIU S H, MAO X D, CHEN H, et al. Catalytic-CO2-desorption studies of BZA-AEP mixed absorbent by the Lewis acid catalyst CeO2-γ-Al2O3 [J]. Molecules, 2023, 28(11): 4438.
IDEM R, SH H, GELOWITZ D, et al. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream: PCT/CA2011/000328 [P]. 2011-03-29.
XING L, WEI K X, LI Q W, et al. One-step synthesized SO<math id="M36"><msubsup><mrow/><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144152&type=3.64066648https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144146&type=2.37066650/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture [J]. Environmental Science & Technology, 2020, 54(21): 13944-13952.
ZHANG X W, HONG J L, LIU H L, et al. SO<math id="M37"><msubsup><mrow/><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144144&type=3.64066648https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144145&type=2.37066650/ZrO2 supported on γ-Al2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions [J]. AIChE Journal, 2018, 64(11): 3988-4001.
ZHANG R, LI Y F, ZHANG Y M, et al. Energy-saving effect of low-cost and environmentally friendly sepiolite as an efficient catalyst carrier for CO2 capture [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4353-4363.
BHATTI A H, WARIS M, KAZMI W W, et al. Metal impregnated activated carbon as cost-effective and scalable catalysts for amine-based CO2 capture [J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109231.
GENG Z B, YANG Y, WANG Y X, et al. Catalytic regeneration of amine-based absorbents for CO2 capture: The effect of acidic sites and accessibility [J]. Separation and Purification Technology, 2023, 327: 124889.
HUANG Y F, ZHANG X W, LUO X, et al. Catalytic performance and mechanism of meso-microporous material β-SBA-15-supported FeZr catalysts for CO2 desorption in CO2-loaded aqueous amine solution [J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2698-2709.
ZHANG X W, ZHU Z Q, SUN X Y, et al. Reducing energy penalty of CO2 capture using Fe promoted SO<math id="M38"><msubsup><mrow/><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144153&type=3.64066648https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72144147&type=2.37066650/ZrO2/MCM-41 catalyst [J]. Environmental Science & Technology, 2019, 53(10): 6094-6102.
任永旺, 王一泽, 常飞祥, 等. 氮掺杂碳改性Ni/Al2O3催化剂的甲烷干重整反应性能研究[J]. 低碳化学与化工, 2023, 48(3): 49-55.
REN Y W, WANG Y Z, CHANG F X, et al. Performance study of nitrogen-doped carbon-modified Ni/Al2O3 catalysts for methane dry reforming reaction [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 49-55.
丁传敏, 马自立, 李宇峰, 等. Ni@ZSM-5催化剂的制备及其甲烷部分氧化反应性能的研究[J]. 天然气化工—C1化学与化工, 2020, 45(6): 1-6.
DING C M, MA Z L, LI Y F, et al. Preparation of Ni@ZSM-5 catalyst and its reaction performance for partial oxidation of methane [J]. Natural Gas Chemical Industry, 2020, 45(6): 1-6.
RIVERO-MENDOZA D, STANLEY J, SCOTT J, et al. An Alumina-Supported Ni-La-based catalyst for producing synthetic natural gas [J]. Catalysts, 2016, 6(11): 170.
ALOTHMAN Z. A review: Fundamental aspects of silicate mesoporous materials [J]. Materials, 2012, 5(12): 2874-2902.
BHATTI U H, NAM S, PARK S, et al. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12079-12087.
王宁, 陆诗建, 刘玲, 等. 胺吸收体系中CO2催化解吸再生技术的研究进展[J/OL]. 化工进展: 1-24[2024-10-05]. DOI: 10.16085/i.issn.1000-6613.2023-2255http://dx.doi.org/10.16085/i.issn.1000-6613.2023-2255.
WANG N, LU S J, LIU L, et al. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J/OL]. Chemical Industry and Engineering Progress: 1-24[2024-10-05]. DOI: 10.16085/i.issn.1000-6613.2023-2255http://dx.doi.org/10.16085/i.issn.1000-6613.2023-2255.
ZHANG R, LI T, ZHANG Y M, et al. CuO modified KIT-6 as a high-efficiency catalyst for energy-efficient amine solvent regeneration [J]. Separation and Purification Technology, 2022, 300: 121702.
AN S L, XU T, XING L. Recent progress and prospects in solid acid-catalyzed CO2 desorption from amine-rich liquid [J]. Gas Science and Engineering, 2023, 120: 205152.
LI T, YU Q, BARZAGLI F, et al. Energy efficient catalytic CO2 desorption: Mechanism, technological progress and perspective [J]. Carbon Capture Science & Technology, 2023, 6: 100099.
ALIVAND M S, MAZAHERI O, WU Y, et al. Catalytic solvent regeneration for energy-efficient CO2 capture [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18755-18788.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构