浏览全部资源
扫码关注微信
1.中国石油大学(北京) 油气管道输送安全国家工程研究中心,石油工程教育部重点实验室,城市油气输配技术北京市重点实验室北京102249
2.中国石油西南油气田燃气分公司四川成都610017
何银博(1999—),硕士研究生,研究方向为液氢储运与泄露数值模拟、安全预警及防护,E-mail:18739580281@163.com。
孙恒(1976—),博士,副教授,研究方向为气液流动数值模拟技术、氢能输送与氢液化、天然气处理和液化、LNG冷能回收以及工艺动态仿真和优化,E-mail:bddukesh@163.com。
网络出版日期:2025-01-13,
收稿日期:2024-09-14,
修回日期:2024-11-11,
移动端阅览
何银博, 孙恒, 刘楚茹, 等. 基于文丘里管的天然气掺氢流动规律研究[J/OL]. 低碳化学与化工, 2025,1-9.
HE YINBO, SUN HENG, LIU CHURU, et al. Study of hydrogen-blending natural gas flow law based on Venturi tube. [J/OL]. Low-carbon chemistry and chemical engineering, 2025, 1-9.
何银博, 孙恒, 刘楚茹, 等. 基于文丘里管的天然气掺氢流动规律研究[J/OL]. 低碳化学与化工, 2025,1-9. DOI: 10.12434/j.issn.2097-2547.20240387.
HE YINBO, SUN HENG, LIU CHURU, et al. Study of hydrogen-blending natural gas flow law based on Venturi tube. [J/OL]. Low-carbon chemistry and chemical engineering, 2025, 1-9. DOI: 10.12434/j.issn.2097-2547.20240387.
利用现役的天然气管道掺氢混输,是实现氢气大规模、长距离和低成本储运的有效方法。开发高效便捷的掺氢设备,增大天然气和氢气的掺混均匀度,有利于提高氢气输送效率、保障管道长距离输送及下游用气安全。利用文丘里管作为掺氢设备,用甲烷替代天然气,将甲烷和氢气进行掺混,采用数值模拟的方法,研究了不同的掺混结构和工况对甲烷和氢气掺混流动过程及掺混均匀度的影响。结果表明,在T型管道后添加文丘里管可以增大掺混均匀度。在模拟工况下,当管喉比(文丘里管喉管段与直管段直径比)为1/3时,掺混效果最好;当掺氢比(氢气与甲烷的质量分数比)为15%时,掺混效果最好,掺混均匀度随着掺氢比的增大而增大。与静态掺混器相比,即使甲烷流速较小,添加了文丘里管的管道内仍可保持较大的掺混均匀度。运行压力越小,掺混均匀度波动越小,掺混过程更稳定。
Utilizing the existing natural gas pipelines for hydrogen blending is an effective method for achieving large-scale
long-distance
and low-cost storage and transportation of hydrogen. Developing efficient and convenient hydrogen blending device and improving the blending uniformity of hydrogen and natural gas can improve hydrogen transportation efficiency and ensure long-distance pipeline transportation and downstream gas safety. Using a Venturi tube as the hydrogen blending device
methane was used instead of natural gas to mix methane and hydrogen. By numerical simulation method
the influence of different blending structures and operating conditions on the flow process and blending uniformity of methane and hydrogen was studied. The results show that adding a Venturi tube after T-shaped pipeline can effectively improve the blending uniformity. Under the simulated operating conditions
the best blending effect is achieved when the tube-throat ratio (diameter ratio of throat section to straight section of the Venturi tube) is 1/3. When the hydrogen blending ratio (mass fraction ratio of hydrogen to methane) is 15%
the blending effect is the best
and the blending uniformity increases with the increase of the hydrogen blending ratio. Compared with static mixing devices
even with low methane flow rates
the pipeline with added a Venturi tube can still maintain great mixing uniformity. The lower the operating pressure
the smaller the fluctuation of blending uniformity
and the more stable the blending process.
天然气掺氢文丘里管掺混均匀度掺氢比流体流动规律
hydrogen-blending natural gasVenturi tubeblending uniformityhydrogen blending ratiofluid flow law
左凯文. “双碳”背景下,天然气行业发展前景探索[C]//中国城市燃气协会标准工作委员会. 2023年中国城市燃气协会标准工作委员会年会暨燃气安全运营和智慧建设研讨会论文集. 上海: 中国城市燃气协会标准工作委员会, 2023: 4.
ZUO K W. Prospects for the natural gas industry in the context of the “dual-carbon” context [C]//China City Gas Association Standard Working Committee. 2023 Proceedings of the Annual Meeting of the Standard Working Committee of China City Gas Association and Seminar on Gas Safety Operation and Wisdom Construction. Shanghai: China City Gas Association Standards Working Committee, 2023: 4.
周洪宇. 尽快制定国家氢能发展战略[EB/OL]. (2021-06-15)[2024-09-14]. https://www.rmzxb.com.cn/c/2021-06-15/2881032.shtmlhttps://www.rmzxb.com.cn/c/2021-06-15/2881032.shtml.
ZHOU H Y. Formulate the development strategy of national hydrogen energy expeditiously [EB/OL]. (2021-06-15)[2024-09-14]. https://www.rmzxb.com.cn/c/2021-06-15/2881032.shtmlhttps://www.rmzxb.com.cn/c/2021-06-15/2881032.shtml.
梁严, 周淑慧, 吴璇, 等. “天然气+氢能”全产业链融合发展现状及趋势[J]. 油气与新能源, 2023, 35(6): 1-7.
LIANG Y, ZHOU S H, WU X, et al. Development of the entire industry Chain for “natural gas + hydrogen energy”: Status and trends [J]. Petroleum and New Energy, 2023, 35(6): 1-7.
张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
ZHANG X, FAN X H, WU Z Y, ZHENG L J, et al. Hydrogen energy supply chain cost analysis and suggestions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
康俊鹏, 薛威林, 宫淑毓. 双碳背景下氢能产业发展及混氢输送工艺研究[J]. 工业加热, 2023, 52(9): 6-9.
KANG J P, XUE W L, GONG S Y. Research on hydrogen energy industry development and mixed hydrogen transportation technology under the background of double carbon [J]. Industrial Heating, 2023, 52(9): 6-9.
李敬法, 李建立, 王玉生, 等. 氢能储运关键技术研究进展及发展趋势探讨[J]. 油气储运, 2023, 42(8): 856-871.
LI J F, LI J L, WANG Y S, et al. Research progress and development trends of key technologies for hydrogen energy storage and transportation [J]. Oil & Gas Storage and Transportation, 2023, 42(8): 856-871.
刘方, 杨宏伟, 韩银杉, 等. 天然气掺氢比对终端用气设备使用性能的影响[J]. 低碳化学与化工, 2023, 48(2): 174-178.
LIU F, YANG H W, HAN Y S, et al. Effect of hydrogen-blending ratio of natural gas on performance of terminal gas equipment [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 174-178.
KHABBAZI A J, ZABIHI M, LI R, et al. Mixing hydrogen into natural gas distribution pipeline system through Tee junctions [J]. International Journal of Hydrogen Energy, 2024, 49: 332-1344.
安永伟, 孙晨, 冀守虎, 等. 天然气掺氢在管道流动中的氢浓度分布[J]. 力学与实践, 2022, 44(4): 767-75.
AN Y W, SUN C, JI S H, et al. Hydrogen concentration distribution in flow of hydrogen blended to natural gas in pipeline [J]. Mechanics in Engineering, 2022, 44(4): 767-775.
苏越, 李敬法, 宇波, 等. 氢气和天然气在静态混合器中的掺混模拟[J]. 天然气工业, 2023, 43(3): 113-122.
SU Y, LI Z F, YU B, et al. Simulation study on the mixing of hydrogen and natural gas in static mixers [J]. Natural Gas Industry, 2023, 43(3): 113-122.
LIU Y Z, RAO A, MA F H, et al. Investigation on mixing characteristics of hydrogen and natural gas fuel based on SMX static mixer [J]. Chemical Engineering Research and Design, 2023, 197: 738-749.
刘翠伟, 崔兆雪, 张家轩,等. 掺氢天然气管道的分层现象[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 153-161.
LIU C W, CUI Z X, ZHANG J X, et al. Stratification in pipelines with hydrogen into natural gases [J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 153-161.
李苒苒, 刘振翼, 李鹏亮. 室内掺氢天然气泄漏分层现象模拟研究[J]. 中国安全生产科学技术, 2023, 19(9): 129-135.
LI R R, LIU Z Y, LI P L. Simulation study on stratification phenomenon of indoor hydrogen-blended natural gas leakage [J]. Journal of Safety Science and Technology, 2023, 19(9): 129-135.
王帅, 杨成功, 周海, 等. T型天然气管道掺氢输送流动特性数值模拟研究[J]. 延安大学学报(自然科学版), 2023, 42(4): 1-8.
WANG S, YANG C G, ZHOU H, et al. Numerical simulation study on flow characteristics of hydrogen blending in T-shaped natural gas pipeline [J]. Journal of Yan’an University (Natural Science Edition), 2023, 42(4): 1-8.
李敬法, 宇波, 苏越, 等. 静置工况条件下掺氢天然气浓度分布规律[J]. 天然气工业, 2024, 44(2): 145-155.
LI J F, YU B, SU Y, et al. Concentration distribution pattern of hydrogen-blended natural gas under static operating conditions [J]. Natural Gas Industry, 2024, 44(2): 145-155.
赵聪. LNG储罐液相泄漏扩散过程的数值研究[D]. 大连: 大连理工大学, 2017.
ZHAO C. The numerical simulation on liquid phase leakage and dispersion process of LNG tank [D]. Dalian: Dalian University of Technology, 2017.
申明星. 气-气快速混合过程的CFD数值模拟[D]. 上海: 华东理工大学, 2012.
SHEN M X. The CFD numerical simulation of rapid gas-gas mixing [D]. Shanghai: East China University of Science and Technology, 2012.
马良, 李鹏, 任万龙, 等. 空腔结构对文丘里管的流场特性影响[J]. 工程与试验, 2023, 63(2): 27-29+42.
MA L, LI P, REN W L, et al. Influence of cavity structure on flow field characteristics of Venturi Tube [J]. Engineering & Test, 2023, 63(2): 27-29+42.
申屠云奇, 宋煜晨, 尹俊连, 等. 扩散角对文丘里管内湍流影响的试验研究[J]. 核动力工程, 2021, 42(2): 16-22.
SHENTU Y Q, SONG Y C, YIN J L, et al. Experimental study on effect of diffusion angle on turbulence in Venturi tube [J]. Nuclear Power Engineering, 2021, 42(2): 16-22.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构