浏览全部资源
扫码关注微信
1.石河子大学 化学化工学院,新疆 石河子 832003
2.石河子大学 兵团能源发展研究院,新疆 石河子 832003
张国佩(1989—),博士研究生,研究方向为二氧化碳的转化利用,E-mail:angxiaoang2018@126.com。
王聪(1993—),博士,副教授,研究方向为二氧化碳的转化利用,E-mail:cw2023@shzu.edu.cn;
李兆敏(1965—),博士,教授,研究方向为二氧化碳捕集、利用与封存,E-mail:lizhm@upc.edu.cn。
网络出版日期:2024-12-26,
收稿日期:2024-09-08,
修回日期:2024-11-01,
移动端阅览
张国佩,王聪,张肖阳等.镍-镧双金属催化剂CO2-CH4重整制合成气催化性能研究[J].低碳化学与化工,
ZHANG Guopei,WANG Cong,ZHANG Xiaoyang,et al.Study on catalytic performance of Ni-La bimetallic catalyst for CO2-CH4 reforming to syngas[J].Low-carbon Chemistry and Chemical Engineering,
张国佩,王聪,张肖阳等.镍-镧双金属催化剂CO2-CH4重整制合成气催化性能研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240380.
ZHANG Guopei,WANG Cong,ZHANG Xiaoyang,et al.Study on catalytic performance of Ni-La bimetallic catalyst for CO2-CH4 reforming to syngas[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240380.
CO
2
和CH
4
催化干重整反应意义重大,一方面能够实现两种温室气体回收,另一方面其反应产物H
2
和CO又是费托合成的重要原料气。镍基催化剂因具有较高催化活性和较低成本受到广泛关注。以MCM-41为载体,采用溶胶-凝胶法制备了La
2
NiO
4
/MCM-41系列双金属催化剂,考察了焙烧温度、Ni负载量、
n
(La)/
n
(Ni)和反应温度对其CH
4
-CO
2
催化重整性能的影响,并通过BET、SEM-EDX、XRD、H
2
-TPR、TG-DSC、Raman和TPO等技术对反应前/后催化剂进行了表征。结果表明,类钙钛矿型La
2
NiO
4
是金属镍主要存在形式且镍分散性良好,随着
Ni负载量增大,催化剂比表面积和孔容迅速减小。Ni负载量和反应温度对双金属催化剂催化性能影响最为显著。在700 ℃、0.10 MPa和18000 mL/(h·g)反应条件下,5%La
2
NiO
4
/MCM-41经过100 h反应后,CH
4
和CO
2
转化率较初始均有不同程度下降,但其平衡转化率仍分别达到了72.89%和81.08%。反应后催化剂表面出现了明显积炭,以碳纳米管为主,且随着反应时间延长碳纳米管尺寸逐渐增大,最终催化剂表面金属Ni活性位点被碳纳米管所覆盖,导致催化剂失活。
The catalytic dry reforming of CO
2
and CH
4
holds significant importance. On one hand
it enables the recycling of two major greenhouse gases
while on the other hand
its reaction products
H
2
and CO
serve as critical feedstocks for Fischer-Tropsch synthesis. Nickel-based catalysts have attracted widespread attention due to their high catalytic activity and low cost. La
2
NiO
4
/MCM-41 serials bimetallic catalysts were prepared using the sol-gel method
with MCM-41 as the support. The effects of calcination temperature
Ni loadings
n
(La)/
n
(Ni)
and reaction temperature on its CH
4
-CO
2
catalytic reforming performance were investigated. The catalysts before/after reaction were characterized using BET
SEM-EDX
XRD
H
2
-TPR
TG-DSC Raman
and TPO techniques. The results show that perovskite-like La
2
NiO
4
is the primary form of nickel in the catalyst and exhibites good dispersion. As the Ni loading increases
the specific surface area and pore volume of the catalysts decrease rapidly. Ni loading and reaction temperature are found to have the most significant impact on the catalytic performance of bimetallic catalysts. Under reaction conditions of 700 ℃
0.10 MPa and 18000 mL/(h·g)
the conversion rates of CH
4
and CO
2
after 100 h of reaction show varying degrees of decline compared to the initial values. However
their equilibrium conversion rates still reach 72.89% and 81.08%
respectively. Post-reaction characterization revealed significant carbon deposition on the catalyst surface
primarily in the form of
carbon nanotubes. The size of these carbon nanotubes increases with the reaction time prolongs
eventually covering the active Ni sites on the catalyst surface and leading to catalyst deactivation.
镍-镧双金属催化剂La2NiO4/MCM-41CO2-CH4干重整
nickel-lanthanum bimetallic catalystLa2NiO4/MCM-41CO2-CH4dry reforming
DAVID T, JASON H, CLARENCE L. Carbon-negative biofuels from low-input high-diversity grassland biomass [J]. Science, 2006, 314:1598-1600.
HIRONORI A, MICHELE A, JOHN N A, et al. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J]. Chemical Reviews, 2001, 101(4): 953-996.
MUHAMMAD U, W.M.A. W D, HAZZIM F A. Dry reforming of methane: Influence of process parameters—A review [J]. Renewable & Sustainable Energy Reviews, 2015, 45:710-44.
HOU Z Y, CHEN P, FANG H L, et al. Production of synthesis gas via methane reforming with CO on noble metals and small amount of noble-(Rh-) promoted Ni catalysts [J]. International Journal of Hydrogen Energy, 2006, 31(5): 555-561.
ANDREY I T, MIEKO I, TATSUO T, et al. Dry reforming of methane over supported noble metals: A novel approach to preparing catalysts [J]. Catalysis Communications, 2003, 4: 493-498.
JABBOUR K, HASSAN N E, CASALE S, et al. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane [J]. International Journal of Hydrogen Energy, 2014, 39(15): 7780-7787.
ABDULRAHMAN A, AISHAH A J, YAHYA G, et al. A review on catalyst development for dry reforming of methane to syngas: Recent advances [J]. Renewable & Sustainable Energy Reviews, 2019, 108: 175-193.
阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857.
RUAN Y Z, LU Y, WANG S P. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming [J]. Chemical Industry and Engineering Progress, 2018, 37(10):3850-3857.
冯文磊, 杨文师, 陈健勇, 等. Ni@SiO2核壳型催化剂上孔调控对甲烷干重整催化性能的影响[J]. 低碳化学与化工, 2024, 49(6): 10-16.
FENG W L, YANG W S, CHEN J Y, et al. Effects of pore modulation on catalytic performance of Ni@SiO2 core-shell catalysts for methane dry reforming [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(6): 10-16.
SHI L Y, LI Y X, XUE D M, et al. Fabrication of highly dispersed nickel in nanoconfined spaces of as-made SBA-15 for dry reforming of methane with carbon dioxide [J]. Chemical Engineering Journal, 2020, 390(15): 124491.
ALBERTO R G, ROSA P, ALFONSO C. Nickel particles selectively confined in the mesoporous channels of SBA-15 yielding a very stable catalyst for DRM reaction [J]. Journal of Physical Chemistry B, 2018, 122(2): 500-510.
TIAN J Q, LI H C, ZENG X, et al. Facile immobilization of Ni nanoparticles into mesoporous MCM-41 channels for efficient methane dry reforming [J]. Chinese Journal of Catalysis, 2019, 40: 1395-1404.
LIU H R, DOMINIK W, RADOSLAW D, et al. La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures [J]. Fuel, 2016, 182: 8-16.
NI J, CHEN L W, LIN J Y, et al. High performance of Mg-La mixed oxides supported Ni catalysts for dry reforming of methane: The effect of crystal structure [J]. International Journal of Hydrogen Energy, 2013, 38(31): 13631-13642.
REN H P, SONG Y H, WANG W, et al. Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane [J]. Chemical Engineering Journal, 2015, 259: 581-593.
吴兴亮, 王毅婕, 吕凌辉, 等. 氧化镧掺杂的双孔镍基催化剂甲烷干重整反应性能研究[J]. 天然气化工—C1化学与化工, 2022, 47(4): 73-82.
WU X L, WANG Y J, LV L H, et al. Study on catalytic performances of Ni-based catalysts with bimodal porous structure modified by La2O3 in dry reforming of methane [J]. Natural Gas Chemical Industry, 2022, 47(4): 73-82.
LI K, HE F, YU H M, et al. Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni(111) surface [J]. Journal of Catalysis, 2018, 364: 248-261.
LI B, YUAN X Q, LI L Y, et al. Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane [J]. International Journal of Hydrogen Energy, 2021, 46(62): 31608-31622.
LI X Y, LI D, TIAN H, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles [J]. Applied Catalysis B: Environmental, 2017, 202: 683-694.
OEMAR U, KATHIRASER Y, MO L, et al. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modeling [J]. Catalysis Science & Technology, 2016, 6:1173-1186
LI Z W, Li M, ASHOK J, et al. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound [J]. Energy Conversion and Management, 2019, 180(15): 822-830.
DAS S, JANGAM A, XI S B, et al. Highly dispersed Ni/Silica by carbonization-calcination of a chelated precursor for coke-free dry reforming of methane [J]. ACS Applied Energy Materials, 2020, 3(8): 7719-7735.
CHEN X, HONDA K, ZHANG Z G. A comprehensive comparison of CH4-CO2 reforming activities of NiO/Al2O3 catalysts under fixed- and fluidized-bed operations [J]. Applied Catalysis A: General, 2005, 288(1/2): 86-97.
DAS S, SENGUPTA M, PATEL J, et al. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles [J]. Applied Catalysis A: General, 2017, 545: 113-126.
KIMA J H, SUHB D J, PARK T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts [J]. Applied Catalysis A: General, 2000, 197(2): 191-200.
BU K K, KUBOON S C, DENG J, et al. Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts [J]. Applied Catalysis B: Environmental, 2019, 252: 86-97.
LIU D P, LAU R, BORGNA A, et al. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts [J]. Applied Catalysis A: General, 2009, 258: 110-118.
AZAM M, SEYED M A, GOLSHAN M. CO2 reforming of methane over Ni/ZnAl2O4 catalysts: Influence of Ce addition on activity and stability [J]. International Journal of Hydrogen Energy, 2017, 42: 16436-16448.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构