浏览全部资源
扫码关注微信
1.大连交通大学 材料科学与工程学院,辽宁 大连 116028
2.中国科学院 大连化学物理研究所,辽宁 大连 116023
田梦圆(1999—),硕士研究生,研究方向为液态金属催化甲烷转化,E-mail:mengyuantian@dicp.ac.cn。
卢璐(1983—),博士,教授级高级实验师,研究方向为电化学,E-mail:piao0215@163.com;
李慧(1981—),博士,研究员,研究方向为高纯氢气分离、生产和二氧化碳捕集、加氢转化,E-mail:hui.li@dicp.ac.cn。
网络出版日期:2025-01-02,
收稿日期:2024-08-28,
修回日期:2024-09-28,
移动端阅览
田梦圆,王莹,孙曦等.甲烷裂解制氢用液态金属催化剂研究进展[J].低碳化学与化工,
TIAN Mengyuan,WANG Ying,SUN Xi,et al.Research progress on liquid metal catalysts for methane cracking to produce hydrogen[J].Low-carbon Chemistry and Chemical Engineering,
田梦圆,王莹,孙曦等.甲烷裂解制氢用液态金属催化剂研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240355.
TIAN Mengyuan,WANG Ying,SUN Xi,et al.Research progress on liquid metal catalysts for methane cracking to produce hydrogen[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240355.
发展氢能是实现“双碳”目标、保障国家能源安全的必要选择。甲烷裂解制氢是一种将甲烷转化为氢气的有效方法,具有广泛的应用前景。将液态金属催化剂用于催化甲烷裂解制氢,可实现碳减排,解决传统甲烷裂解制氢技术存在的高能耗、低产率以及催化剂失活等问题。综述了甲烷裂解制氢机理,分析了液态金属催化剂研究进展,研究了液态金属单原子催化甲烷裂解制氢的可行性与优越性。液态金属的流动性可解决催化剂因结焦而失活的问题,同时液态金属具有较低的熔点,可在一定程度上降低甲烷裂解体系所需温度。甲烷裂解制氢用液态金属单原子催化剂的开发和利用可大幅提升甲烷转化率,并通过反应获得更多的氢气和高附加值碳产品。
The development of hydrogen energy is an effective method for achieving the “dual carbon” goals and ensuring national energy security. Methane cracking to produce hydrogen is an important process for converting methane into hydrogen
and has broad application prospects. Liquid metal catalysts have been employed in methane cracking to produce hydrogen
facilitating carbon emission reduction and addressing the challenges of high energy consumption
low production yield and catalyst deactivation in traditional methane cracking technologies. The mechanisms of methane cracking to produce hydrogen were summarized. The current research progress on liquid metal catalysts was analyzed. The feasibility and superiority of single-atom liquid metal catalysts for methane cracking to produce hydrogen were studied. The fluidity of liquid metals can mitigate catalyst deactivation caused by coking. At the same time
liquid metals have relatively low melting points
which can to some extent reduce the temperature of methane cracking systems. The development and utilization of liquid metal single-atom catalysts for methane cracking to produce hydrogen can significantly improve methane conversion rates and obtain more hydrogen and high added value carbon products through reactions.
甲烷制氢液态金属催化剂
methanehydrogen productionliquid metalcatalyst
CHAMOUN R, DEMIRCI U B, MIELE P. Cyclic dehydrogenation-(re)hydrogenation with hydrogen-storage materials: An overview [J]. Energy Technology, 2015, 3(2): 100-117.
RUSMAN N A A, DAHARI M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications [J]. International Journal of Hydrogen Energy, 2016, 41(28): 12108-12126.
ABBAS H F, DAUD W M A W. Hydrogen production by methane decomposition: A review [J]. International Journal of Hydrogen Energy, 2010, 35(3): 1160-1190.
ZURAIQI K, ZAVABETI A, ALLIOUX F M, et al. Liquid metals in catalysis for energy applications [J]. Joule, 2020, 4(11): 2290-2321.
TACCARDI N, GRABAU M, DEBUSCHEWITZ J, et al. Gallium-rich Pd-Ga phases as supported liquid metal catalysts [J]. Nature Chemistry, 2017, 9(9): 862-867.
TYRER D. Production of hydrogen: US1803221A [P]. 1931-04-28.
STEINBERG M. The carnol process for CO2 mitigation from power plants and the transportation sector [J]. Energy conversion and management, 1996, 37(6/7/8): 843-848.
MSHEIK M, RODAT S, ABANADES S. Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors [J]. Energy, 2022, 260: 124943.
SERBAN M, LEWIS M A, MARSHALL C L, et al. Hydrogen production by direct contact pyrolysis of natural gas [J]. Energy & fuels, 2003, 17(3): 705-713.
GEISSLER T, PLEVAN M, ABÁNADES A, et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed [J]. International Journal of Hydrogen Energy, 2015, 40(41): 14134-14146.
PAXMAN D, TROTTIER S, NIKOO M, et al. Initial experimental and theoretical investigation of solar molten media methane cracking for hydrogen production [J]. Energy Procedia, 2014, 49: 2027-2036.
UPHAM D C, AGARWAL V, KHECHFE A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon [J]. Science, 2017, 358(6365): 917-920.
DE CAPRARIIS B, DAMIZIA M, BUSILLO E, et al. Chapter six—Advances in molten media technologies for methane pyrolysis [M]//PELUCCHI M, MAESTRI M. Advances in Chemical Engineering. USA: Academic Press. 2023: 319-356.
VISWANATHAN B. Chapter 3: Natural Gas [M]//VISWANATHAN B. Energy Sources. Amsterdam: Elsevier. 2017: 59-79.
DAI H D, BESSER R S. Fluidization analysis for catalytic decomposition of methane over carbon blacks for solar hydrogen production [J]. International Journal of Hydrogen Energy, 2021, 46(79): 39079-39094.
KELLER M. Comment on “methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy” [J]. Industrial & Engineering Chemistry Research, 2021, 60(48): 17792-17794.
PANCHENKO A, RIECK D, FLICK D, et al. Sauberer wasserstoff aus methanpyrolyse [J]. Chemie Ingenieur Technik, 2024, 96(1-2): 55-64.
SÁNCHEZ-BASTARDO N, SCHLÖGL R, RULAND H. Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy [J]. Industrial & Engineering Chemistry Research, 2021, 60(32): 11855-11881.
GRABKE H. The kinetics of decarburization and carburization of gamma-iron in methane-hydrogen mixtures [J]. Physik Chem, 1965, 69: 409-414.
GRABKE H. Evidence on the surface concentration of carbon on gamma iron from the kinetics of the carburization in CH4-H2 [J]. Metallurgical Transactions, 1970, 1: 2972-2975.
曹梦杰, 聂林峰, 李双德, 等. 甲烷催化裂解制氢研究进展[J]. 应用化工, 2023, 52(7): 2218-2224.
CAO M J,NIE L F,LI S D, et al. Research progress in catalytic cracking of methane for hydrogen. production[J]. Applied Chemical Industry, 2023, 52(7): 2218-2224.
黄泽皑, 周芸霄, 张魁魁, 等. 甲烷裂解制氢和碳材料工艺研究进展[J]. 低碳化学与化工, 2024, 49(9): 1-11.
HUANG Z A, ZHOU Y X, ZHANG K K, et al. Research progress on methane pyrolysis process for hydrogen and carbon materials [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(9): 1-11.
PATLOLLA S R, KATSU K, SHARAFIAN A, et al. A review of methane pyrolysis technologies for hydrogen production [J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113323.
崔凯. 甲烷催化裂解制氢研究现状 [J]. 广州化工, 2022, 50(14): 44-46.
CUI K. Research status of hydrogen production by catalytic cracking of methane [J]. Guangzhou Chemical Industry, 2022, 50(14): 44-46.
BAYAT N, REZAEI M, MESHKANI F. Methane decomposition over Ni-Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber [J]. International Journal of Hydrogen Energy, 2016, 41(3): 1574-1584.
BAYAT N, REZAEI M, MESHKANI F. Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni-Pd/Al2O3 catalyst [J]. International Journal of Hydrogen Energy, 2016, 41(12): 5494-5503.
MSHEIK M, RODAT S, ABANADES S. Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis [J]. Energies, 2021, 14(11): 3107
廖加术, 刘建星, 王思蜀, 等. 液态金属催化裂解甲烷制氢动力学研究[J]. 高等学校化学学报, 2024, 45(2): 62-68.
LIAO J S, LIU J X, WANG S S, et al. Kinetics of methane decomposition in the catalytic liquid metal. reactor for hydrogen production [J]. Chemical Journal of Chinese Universities, 2024, 45(2): 62-68.
BUSILLO E, DAMIZIA M, DE FILIPPIS P, et al. Methane pyrolysis in molten media: The interplay of physical properties and catalytic activity on carbon and hydrogen production [J]. Journal of Analytical and Applied Pyrolysis, 2024, 183: 106752.
STEINBERG M. Fossil fuel decarbonization technology for mitigating global warming [J]. International Journal of Hydrogen Energy, 1999, 24(8): 771-777.
WANG K, LI W S, ZHOU X P. Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium [J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 153-157.
何阳东, 常宏岗, 王丹, 等. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280.
HE Y D, CHANG H G, WANG D, et al. Development of methane pyrolysis based an molten metal. technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280.
PÉREZ B J L, JIMÉNEZ J A M, BHARDWAJ R, et al. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment [J]. International Journal of Hydrogen Energy, 2021, 46(7): 4917-4935.
MA Z C, ZHAO D D, DONG L L, et al. Research advances of molten metal systems for catalytic cracking of methane to hydrogen and carbon [J]. International Journal of Hydrogen Energy, 2024, 83: 257-269.
FATIMA S S, ZURAIQI K, ZAVABETI A, et al. Current state and future prospects of liquid metal catalysis [J]. Nature Catalysis, 2023, 6(12): 1131-1139.
ZAGHLOUL N, KODAMA S, SEKIGUCHI H. Hydrogen production by methane pyrolysis in a molten-metal bubble column [J]. Chemical Engineering & Technology, 2021, 44(11): 1986-1993.
RAHIMI N, KANG D, GELINAS J, et al. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts [J]. Carbon, 2019, 151: 181-191.
KANG D, RAHIMI N, GORDON M J, et al. Catalytic methane pyrolysis in molten MnCl2-KCl [J]. Applied Catalysis B: Environmental, 2019, 254: 659-666.
QIAN J X, CHEN T W, ENAKONDA L R, et al. Methane decomposition to pure hydrogen and carbon nano materials: State-of-the-art and future perspectives [J]. International Journal of Hydrogen Energy, 2020, 45(32): 15721-15743.
PARKINSON B, MATTHEWS J W, MCCONNAUGHY T B, et al. Techno-economic analysis of methane pyrolysis in molten metals: Decarbonizing natural gas [J]. Chemical Engineering & Technology, 2017, 40(6): 1022-1030.
MSHEIK M, RODAT S, ABANADES S. Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis [J]. Energies, 2021, 14(11): 3107.
CHEN L N, SONG Z G, ZHANG S C, et al. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis [J]. Science, 2023, 381(6660): 857-861.
PLEVAN M, GEISSLE T, ABÁNADES A, et al. Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis [J]. International Journal of Hydrogen Energy, 2015, 40(25): 8020-8033.
TANG J M, CHRISTOFFERSON A J, SUN J, et al. Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis [J]. Nature Nanotechnology, 2024, 19(3): 306-310.
YAN H, HE K, SAMEK I A, et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion [J]. Science, 2021, 371(6535): 1257-1260
MOTAGAMWALA A H, ALMALLAHI R, WORTMAN J, et al. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit [J]. Science, 2021, 373(6551): 217-212.
TANG J M, KUMAR P V, CAO Z B, et al. Low temperature mechano-catalytic biofuel conversion using liquid metals [J]. Chemical Engineering Journal, 2023, 452: 139350.
王丽华, 杨卫亚, 沈智奇, 等. 贵金属单原子催化剂的制备、表征及在化学化工中的应用[J]. 当代化工, 2023, 52(10): 2290-2298.
WANG L H, YANG W Y, SHEN Z Q, et al. Synthesis, characterization and applications of noble metal single atom catalysts for chemical industry [J]. Contemporary Chemical Industry, 2023, 52(10): 2290-2298.
CHENG N C, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J]. Nature Communications, 2016, 7(1): 13638.
FANG S, ZHU X R, LIU X K, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction [J]. Nature Communications, 2020, 11(1): 1029.
XIA C, QIU Y R, XIA Y, et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots [J]. Nature Chemistry, 2021, 13(9): 887-894.
SUN X, LI H. Recent progress of Ga-based liquid metals in catalysis [J]. RSC Advances, 2022, 12(38): 24946-24957.
RAHIM M A, TANG J M, CHRISTOFFERSON A J, et al. Low-temperature liquid platinum catalyst [J]. Nature Chemistry, 2022, 14(8): 935-941.
ZHENG X B, LI B B, WANG Q S, et al. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis [J]. Nano Research, 2022, 15(9): 7806-7839.
ZHANG Z D, ZHU J X, CHEN S H, et al. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction [J]. Angewandte Chemie International Edition, 2023, 62(3): e202215136.
HE C X, GONG Y L, LI S T, et al. Single-atom alloys materials for CO2 and CH4 catalytic conversion [J]. Advanced Materials, 2024, 36(16): 2311628.
TANG Y L, PENG P, WANG S Y, et al. Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper [J]. Chemistry of Materials, 2017, 29(19): 8404-8411.
PALMER C, TARAZKAR M, KRISTOFFERSEN H H, et al. Methane pyrolysis with a molten Cu-Bi alloy catalyst [J]. ACS Catalysis, 2019, 9(9): 8337-8345.
敖东羿. 多层高品质石墨烯的大量制备及其应用研究 [D]. 成都: 电子科技大学, 2020.
AO D Y. Study on massive production of multilayer high-quality graphene and its applications [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构