
浏览全部资源
扫码关注微信
中国神华煤制油化工有限公司,北京 100011
吴琼(1983—),硕士,高级工程师,研究方向为煤化工,E-mail:10511361@ceic.com。
网络出版日期:2024-12-25,
收稿日期:2024-08-26,
修回日期:2024-10-21,
移动端阅览
吴琼,刘聪志,王建立等.电解水析氢催化剂研究进展[J].低碳化学与化工,
WU Qiong,LIU Congzhi,WANG Jianli,et al.Research progress of catalysts for hydrogen evolution in water electrolysis[J].Low-carbon Chemistry and Chemical Engineering,
吴琼,刘聪志,王建立等.电解水析氢催化剂研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240349.
WU Qiong,LIU Congzhi,WANG Jianli,et al.Research progress of catalysts for hydrogen evolution in water electrolysis[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240349.
电解水制氢是一个温和且高效的制氢过程,催化剂在析氢反应(HER)中起着不可替代的作用。在扩大氢气生产过程中,开发高效、稳定且廉价的催化剂是电解水制氢面临的巨大挑战。综述了贵金属、非贵金属和碳基催化剂等常用HER催化剂的研究进展,重点分析了以上HER催化剂的催化活性和稳定性,总结了包括杂原子掺杂、结构工程以及晶体和缺陷工程的一般性改进设计策略,以提升催化剂的催化活性和稳定性。
Hydrogen production in water electrolysis is a mild and efficient process
where catalysts play an irreplaceable role in the hydrogen evolution reaction (HER). In scaling up hydrogen production
developing efficient
stable and inexpensive catalysts presents a significant challenge for hydrogen production in water electrolysis. The research progress of commonly used HER catalysts
including precious metals
non-precious metals and carbon-based catalysts was reviewed. The electrocatalytic activity and stability of the above HER catalysts were analyzed in detail. The general improvement strategies
such as heteroatom doping
structural engineering and crystal and defect engineering were summarized to enhance the electrocatalytic activity and stability of catalysts.
电解水析氢反应催化剂电催化
water electrolysishydrogen evolution reactioncatalystelectro-catalysis
TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity [J]. Nature, 2020, 581(7809): 411-414.
WEI C, RAO R R, PENG J Y, et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells [J]. Advanced Materials, 2019, 31(31): 1806296.
QI G C, ZHAO Q R, LIU Q J, et al. Biomass-derived carbon frameworks for oxygen and carbon dioxide electrochemical reduction [J]. Ionics, 2021, 27(8): 3579-3586.
CHANDRASEKARAN S, YAO L, DENG L B, et al. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond [J]. Chemical Society Reviews, 2019, 48(15): 4178-4280.
MI Y Y, QIU Y, LIU Y F, et al. Cobalt-iron oxide nanosheets for high-efficiency solar-driven CO2-H2O coupling electrocatalytic reactions [J]. Advanced Functional Materials, 2020, 30(31): 2003438.
陈思晗, 张珂, 常丽萍, 等. 传统和新型制氢方法概述[J]. 天然气化工—C1化学与化工, 2019, 44(2): 122-127.
CHEN S H, ZHANG K, CHANG L P, et al. Overview of traditional and new hydrogen production methods [J]. Natural Gas Chemical Industry, 2019, 44(2): 122-127.
苏晨飞, 王进, 曹彬, 等. 微反应器内低碳醇水蒸气重整制氢研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(1): 1-7+23.
SU C F, WANG J, CAO B, et al. Research progress of hydrogen production by steam reforming of low carbon alcohols in microreactor [J]. Natural Gas Chemical Industry, 2022, 47(1): 1-7+23.
张庆生, 黄雪松. 国内外氢能产业政策与技术经济性分析[J]. 低碳化学与化工, 2023, 48(2): 133-139.
ZHANG Q S, HUANG X S. Analysis of domestic and foreign hydrogen energy industrial policies and technical economy [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 133-139.
FANG S, ZHU X R, LIU X K, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction [J]. Nature Communications, 2020, 11(1): 1029.
张奇, 郑东前, 刘馨璐, 等. 大电流密度下高性能析氢电催化剂研究进展[J]. 低碳化学与化工, 2024, 49(5): 96-104.
ZHANG Q, ZHENG D Q, LIU X L, et al.Research progress on high-performance hydrogen evolution reaction electrocatalysts under high current density [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(5): 96-104.
SHANG X, LIU Z Z, LU S S, et al. Pt-C interfaces based on electronegativity-functionalized hollow carbon spheres for highly efficient hydrogen evolution [J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43561-43569.
SOLIMAN A B, HASSAN M H, TRAN NGOC H, et al. Pt immobilization within a tailored porous-organic polymer graphene composite: Opportunities in the hydrogen evolving reaction [J]. ACS Catalysis, 2017, 7(11): 7847-7854.
WANG X, RUDITSKIY A, XIA Y N. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications [J]. National Science Review, 2016, 3(4): 520-533.
YANG X B, WANG Y Y, TONG X L, et al. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives [J]. Advanced Energy Materials, 2022, 12(5): 2102261.
WEI J M, ZHOU M, LONG A C, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions [J]. Nano-Micro Letters , 2018, 10(4): 75.
SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design [J]. Science, 2017, 355: 6321.
YANG D, LEE J, SONG N C, et al. Patent analysis on green hydrogen technology for future promising technologies [J]. International Journal of Hydrogen Energy, 2023, 48(83): 32241-32260.
FERNÁNDEZ-ARIAS P, ANTÓN-SANCHO Á, LAMPROPOULOS G, et al. On green hydrogen generation technologies: A bibliometric review [J]. Applied Sciences, 2024, 14(6): 2524.
JARAMILLO T F, JORGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J]. Science, 2007, 317(5834): 100-102.
YU K M, NING G Q, YANG J T, et al. Restructured PtNi on ultrathin nickel hydroxide for enhanced performance in hydrogen evolution and methanol oxidation [J]. Journal of Catalysts, 2019, 375: 267-278.
GAO L, YANG Z L, SUN T L, et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction [J]. Advanced Energy Materials, 2022, 12(11): 2103943.
KWEON D H, OKYAY M S, KIM S J, et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency [J]. Nature Communications, 2020, 11(1): 1278 .
YE C C, LIU J Z, ZHANG Q H, et al. Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality [J]. Journal of the American Chemical Society, 2021, 143(35): 14169-14177.
XIAO Y, HWANG J Y, SUN Y K. Transition metal carbide-based materials: Synthesis and applications in electrochemical energy storage [J]. Journal of Materials Chemistry A, 2016, 4(27): 10379-10393.
OOKA H, HUANG J, EXNER K S. The sabatier principle in electrocatalysis: Basics, limitations, and extensions [J]. Frontiers in Energy Research, 2021, 9: 654460.
TAN C L, LUO Z M, CHATURVEDI A, et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution [J]. Advanced Materials, 2018, 30(9): 1705509.
LI J C, GE R, LAN P P, et al. In situ phase transition induced TM-MoC/Mo2C (TM = Fe, Co, Ni, and Cu) heterostructure catalysts for efficient hydrogen evolution [J]. Journal of Materials Chemistry A, 2022, 10(19): 10493-10502.
WANG K W, YU K F, XU S N, et al. Synergizing lattice strain and electron transfer in TMSs@1T-MoS2 in-plane heterostructures for efficient hydrogen evolution reaction [J]. Applied Catalysis B: Environmental, 2023, 328: 122445.
SAHOO D P, DAS K K, MANSINGH S, et al. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis [J]. Coordination Chemistry Reviews, 2022, 469: 214666.
LIU S J, ZHU J, SUN M, et al. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets [J]. Journal of Materials Chemistry A, 2020, 8(5): 2490-2497.
HUANG H J, YAN M M, YANG C Z, et al. Graphene nanoarchitectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction [J]. Advanced Materials, 2019, 31(48): 1903415.
JORGE A B, JERVIS R, PERIASAMY A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis [J]. Advanced Energy Materials, 2020, 10(11): 1902494.
PAUL R, ZHAI Q F, ROY A K, et al. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis [J]. Interdisciplinary Materials, 2022, 1(1): 28-50.
WANG J, KONG H, ZHANG J Y, et al. Carbon-based electrocatalysts for sustainable energy applications [J]. Progress in Materials Science, 2021, 116: 100717.
LI Y W, LU M T, WU Y H, et al. Trimetallic metal-organic framework derived carbon-based nanoflower electrocatalysts for efficient overall water splitting [J]. Advanced Materials Interfaces, 2019, 6(12): 1900290 .
VEEMAN D, SHREE M V, SURESHKUMAR P, et al. Sustainable development of carbon nanocomposites: Synthesis and classification for environmental remediation [J]. Journal of Nanomaterials, 2021, 2021: 5840645,.
GONG L, XIA F, ZHU J W, et al. Hydrogen evolution reactivity of pentagonal carbon rings and p-d orbital hybridization effect with Ru [J]. Angewandte Chemie International Edition, 2024: e202411125.
WANG C H, ZHANG J, MIAO K H, et al. Octahedral nanocrystals of Ru-doped PtFeNiCuW/CNTs high-entropy alloy: High performance toward pH-universal hydrogen evolution reaction [J]. Advanced Materials, 2024, 36(33): 2400433.
WANG H F, CHEN L Y, PANG H, et al. Mof-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions [J]. Chemical Society Reviews, 2020, 49(5): 1414-1448.
QIU T J, GAO S, LIANG Z B, et al. Pristine hollow metal-organic frameworks: Design, synthesis and application [J]. Angewandte Chemie International Edition, 2021, 60(32): 17314-17336.
SUN Y M, XUE Z Q, LIU Q L, et al. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution [J]. Nature Communications, 2021, 12(1): 1369.
YUAN W H, LI Y, LIANG L M, et al. Dual-anion doping enables NiSe2 electrocatalysts to accelerate alkaline hydrogen evolution reaction [J]. ACS Applied Energy Materials, 2022, 5(4): 5036-5043.
ZHOU Y P, WANG Y W, ZHAO H Y, et al. Investigation of anion doping effect to boost overall water splitting [J]. Journal of Catalysis, 2020, 381: 84-95.
TANG Y H, LIU Q, DONG L, et al. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction [J]. Applied Catalysis B: Environmental, 2020, 266: 118627.
XU H T, LIU T Y, BAI S X, et al. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting [J]. Nano Letters, 2020, 20(7): 5482-5489.
VESBORG P C K, JARAMILLO T F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy [J]. RSC Advances, 2012, 2(21): 7933-7947.
GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices [J]. Chemical Society Reviews, 2013, 42(7): 2986-3017.
PENG L S, WANG J, NIE Y, et al. Dual-ligand synergistic modulation: A satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts [J]. ACS Catalysis, 2017, 7(12): 8184-8191.
MAI L Q, TIAN X C, XU X, et al. Nanowire electrodes for electrochemical energy storage devices [J]. Chemical Reviews, 2014, 114(23): 11828-11862.
MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution [J]. Chemical Society Reviews, 2014, 43(18): 6555-6569.
CARENCO S, PORTEHAULT D, BOISSIÈRE C, et al. Nanoscaled metal borides and phosphides: Recent developments and perspectives [J]. Chemical Reviews, 2013, 113(10): 7981-8065.
JIAO S L, FU X W, ZHANG L, et al. Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections [J]. Nano Today, 2020, 31: 100833.
JIAO S L, FU X W, WANG S Y, et al. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology [J]. Energy & Environmental Science, 2021, 14(4): 1722-1770.
YANG T H, SHI Y, JANSSEN A, et al. Surface capping agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals [J]. Angewandte Chemie International Edition, 2020, 59(36): 15378-15401.
SHI Y F, LYU Z H, ZHAO M, et al. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications [J]. Chemical Reviews, 2021, 121(2): 649-735.
KOBAYASHI S, TRYK D A, UCHIDA H. Enhancement of hydrogen evolution activity on Pt-skin/PtCo [(111), (100), and (110)] single crystal electrodes [J]. Electrochemistry Communications, 2020, 110: 106615.
SU D W, FORD M, WANG G X. Mesoporous nio crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage [J]. Scientific Reports, 2012, 2(1): 924.
FENG L L, YU G T, WU Y Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting [J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026.
LI C Y, WANG Z J, LIU M D, et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction [J]. Nature Communications, 2022, 13(1): 3338.
KIM M, KIM S H, PARK J, et al. Reconstructing oxygen-deficient zirconia with ruthenium catalyst on atomic-scale interfaces toward hydrogen production [J]. Advanced Functional Materials, 2023, 33(29): 2300673.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构