浏览全部资源
扫码关注微信
1.吉林师范大学 工程学院,吉林 四平 136000
2.吉林师范大学 吉林省高校环境材料与污染控制重点实验室,吉林 四平 136000
刘家如(2001—),硕士研究生,研究方向为环境友好材料开发,E-mail:2012225651@qq.com。
杨春维(1976—),博士,教授,研究方向为水污染控制,E-mail:yangchunwei1995@163.com。
网络出版日期:2024-12-24,
收稿日期:2024-08-21,
修回日期:2024-09-10,
移动端阅览
刘家如,刘喆,杨春维.光催化分解水产氢用CdS光催化剂改性研究进展[J].低碳化学与化工,
LIU Jiaru,LIU Zhe,YANG Chunwei.Research progress on modification of CdS photocatalyst for photocatalytic splitting of aquatic hydrogen[J].Low-carbon Chemistry and Chemical Engineering,
刘家如,刘喆,杨春维.光催化分解水产氢用CdS光催化剂改性研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240347.
LIU Jiaru,LIU Zhe,YANG Chunwei.Research progress on modification of CdS photocatalyst for photocatalytic splitting of aquatic hydrogen[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240347.
氢能作为清洁二次能源,可为解决我国能源问题提供参考。光解水产氢技术因其可以直接利用太阳光把水分解成H
2
和O
2
而备受关注,寻找合适的光催化剂是光解水产氢技术的关键。CdS具有良好的光催化活性,但仍存在能带结构有待进一步优化、光腐蚀及光生载流子复合率高等问题。对CdS光催化剂用于光解水产氢的机理进行了总结,针对CdS光催化剂现存的问题给出了具有参考性的解决方案。采用元素掺杂法可使催化剂获得合理的能带结构,通过设计保护层和去除O
2
可提高催化剂光腐蚀抗性,通过构建内建电场、设计活性位点和形貌调控技术可提高光生载流子迁移效率。
As a clean secondary energy source
hydrogen energy can provide a reference for solving China’s energy problems. Photolysis of water to produce hydrogen has attracted much attention because it can directly use sunlight to split water to H
2
and O
2
.Finding a suitable photocatalyst is the key to photolysis of water to produce hydrogen. CdS has good photocatalytic activity
however
there are still some problems
such as the need for further optimization of the band structure
photocorrosion and high photogenerated carrier recombination rate. It is summarized that the mechanism of
CdS photocatalyst for hydrogen production by photolysis of water
and gives a reference solution to the existing problems of CdS photocatalyst. The reasonable band structure of the catalyst is obtained by element doping
and the photocorrosion resistance is improved by designing the protective layer and removing O
2
and the photogenerated carrier migration efficiency is increased by constructing the built-in electric field
designing the active site and morphology control technology.
CdS光催化剂光解水产氢能带结构光腐蚀光生载流子
CdS photocatalystphotolysis of water to produce hydrogenband structurephotocorrosionphotogenerated carrier
SONG H, LUO S Q, HUANG H M, et al. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives [J]. ACS Energy Letters, 2022, 7(3): 1043-1065.
张琪. 我国制氢技术现状分析[J]. 化工设计通讯, 2023, 49(1): 82-84.
ZHANG Q. Analysis of the current situation of hydrogen production technology in China [J]. Chemical Design Newsletter, 2023, 49(1): 82-84.
WEN J Q, XIE J, ZHANG H D, et al. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation [J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14031-14042.
YU Q, LIN R, JIANG L Y, et al. Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates [J]. Science China Materials, 2018, 61(7): 1007-1011.
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
CHIARELLO G L, DOZZI M V, SELLI E, et al. TiO2-based materials for photocatalytic hydrogen production [J]. Journal of Energy Chemistry, 2017, 26(2): 250-258.
CAO S W, YU J G. g-C3N4-based photocatalysts for hydrogen generation [J]. The Journal of Physical Chemistry Letters, 2014, 5(12): 2101-2107.
JAMAL A N, ZIA U R, SYED N A S, et al. Recent developments and perspectives in CdS-based photocatalysts for water splitting [J]. Journal of Materials Chemistry A, 2020, 8(40): 20752-20780.
KIM D, YONG K. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production [J]. Applied Catalysis B: Environmental, 2021, 282: 119538.
ZHU J F, ZACH M. Nanostructured materials for photocatalytic hydrogen production [J]. Current Opinion in Colloid & Interface Science, 2009, 14(4): 260-269.
WANG P, LI H T, SHENG Y, et al. Inhibited photocorrosion and improved photocatalytic H2-evolution activity of CdS photocatalyst by molybdate ions [J]. Applied Surface Science, 2019, 463: 27-33.
ZHAO D, YANG C F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells [J]. Renewable & Sustainable Energy Reviews, 2016, 54: 1048-1059.
MU R H, AO Y H, WU T F, et al. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods [J]. Journal of Alloys and Compounds, 2020, 812: 151990
NASIR J A, REHMAN Z U, SHAHS S N A, et al. Recent developments and perspectives in CdS-based photocatalysts for water splitting [J]. Journal of Materials Chemistry A, 2020, 8(40): 20752-20780.
GOMATHISANKAR P, HACHISUKA K, KATSUMATA H, et al. Photocatalytic hydrogen production from aqueous Na2S + Na2SO3 solution with B-doped ZnO [J]. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 982-988.
LIU Y X, WANG Z L, HUANG W X. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts [J]. Applied Surface Science, 2016, 389: 760-767.
ZOU L, WANG H R, WANG X. High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-Scheme process [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 303-309.
YAN Y J, YANG M, SHI H X, et al. CuInS2 sensitized TiO2 for enhanced photodegradation and hydrogen production [J]. Ceramics International, 2019, 45: 6093-6101.
CHAI B, PENG T Y, ZENG P, et al. Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation [J]. Dalton Transactions, 2012, 41: 1179.
HAN J S, DAI F X, LIU Y, et al. Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity [J]. Applied Surface Science, 2019, 467/468: 1033-1039.
PRASAD C, TANG H, LIU Q Q, et al. A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production [J]. International Journal of Hydrogen Energy, 2020, 45(1): 337-379.
PAN J Q, JIANG Z Y, FENG S X, et al. The enhanced photocatalytic hydrogen production of the fusiform g-C3N4 modification CaTiO3 nano-heterojunction [J]. International Journal of Hydrogen Energy, 2018, 43(41): 19019-19028.
ZHANG S M, XU D F, CHEN X H, et al. Construction of ultrathin 2D/2D g-C3N4/In2Se3 heterojunctions with highspeed charge transfer nanochannels for promoting photocatalytic hydrogen production [J]. Applied Surface Science, 2020, 528: 146858
GUO P J, XIONG Z Y, YUAN S Y, et al. The synergistic effect of Co/CoO hybrid structure combined with biomass materials promotes photocatalytic hydrogen evolution [J]. Chemical Engineering Journal, 2021, 420: 130372.
CHEN J, SHEN S H, GUO P H, et al. In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production [J]. Applied Catalysis B: Environmental, 2014, 152-153: 335-341.
CHEN S F, ZHANG H Y, FU X L, et al. Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction [J]. Applied Surface Science, 2013, 275: 335-341.
陈海忠, 王磊, 王洲, 等. 半导体复合材料在光催化水分解领域的应用研究[J]. 山东化工, 2024, 53(4): 203-207.
CHEN H Z, WANG L, WANG Z, et al. Research on the application of semiconductor composite materials in the field of photocatalytic water splitting [J]. Shandong Chemical, 2024, 53(4): 203-207.
ZHAO D, YANG C F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells [J]. Renewable & Sustainable Energy Reviews, 2016, 54: 1048-1059.
LI X, YU J G, JARONIEC M. Hierarchical photocatalysts [J]. Chemical Society Reviews, 2016, 45: 2603-2636.
DALRYMPLE O K, STEFANAKOS E, TROTZ M A, et al. A review of the mechanisms and modeling of photocatalytic disinfection [J]. Applied Catalysis B: Environmental, 2010, 98(1/2): 27-38.
CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chemical Reviews, 2010, 110: 6503-6570.
YANG Y T, ZHANG Z S, FANG W H, et al. Unraveling the quantum dynamics origin of high photocatalytic activity in nitrogen-doped anatase TiO2: Time-domain ab initio analysis [J]. Journal of Materials Chemistry A, 2020, 8(47): 25235-25244.
SIDDIQUI H, QURESHI M S, HAQUE F Z. Lithium-doped CuO nanosheets: Structural transformation, optical, and electrical characteristics with enhanced photocatalytic and solar cell performance [J]. Energy & Environmental Materials, 2020, 10: 1-12.
KIM Y H, KIM S Y, KIM K J, et al. Multiscale probing of the influence of the defect-induced variation of oxygen vacancies on the photocatalytic activity of doped ZnO nanoparticles [J]. Journal of Materials Chemistry A, 2020, 8(47): 25345-25354.
CAO M Y, WANG K, TUDELA I, et al. Synthesis of Zn doped g-C3N4 in KCl-ZnCl2 molten salts: The temperature window for promoting the photocatalytic activity [J]. Applied Surface Science, 2020, 533: 147429.
JING L Q, SUN X J, SHANG J, et al. Review of surface photovoltage spectra of nanosized semiconductor and its applications inheterogeneous photocatalysis [J]. Solar Energy Materials & Solar Cells, 2003, 79(2): 133-151.
ZHANG Z, YATES J T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces [J]. Chemical Reviews, 2012, 112(10): 5520-5551.
CAO X L, ZHANG L G, GUO C Y, et al. Ni-doped CdS porous cubes prepared from prussian blue nanoarchitectonics with enhanced photocatalytic hydrogen evolution performance [J]. International Journal of Hydrogen Energy, 2022, 47: 3452-3761.
XU J, YANG W M, HUANG S J, et al. CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction [J]. Nano Energy, 2018, 49:363-371.
SHI R, YE H F, LIANG F, et al. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents [J]. Advanced Materials, 2018, 30: 1705941.
ZUBAIR M, VANHAECKE E M M, SVENUM I H, et al. Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation [J]. Green Energy & Environment, 2020, 5: 461-472.
NING X F, LU G X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting [J]. Nanoscale, 2020, 12: 213-1223.
NING X F, ZHEN W L, ZHANG X Q, et al. Significant enhancement of stability for visible photocatalytic overall water splitting by assembling ultra-thin layer of NiO over Zn1-xCdxS [J]. Chemistry Sustainability Energy Materials, 2019, 12(7): 1410-1420.
TIAN B, YANG B J, LI J, et al. Water splitting by CdS/Pt/WO3-CeOx photocatalysts with assisting of artificial blood perfluorodecalin [J]. Journal of Catalysis, 2017, 350: 189-196.
ZHEN W L, NING X F, WANG M, et al. Enhancing hydrogen generation via fabricating peroxide decomposition layer over NiSe/MnO2-CdS catalyst [J]. Journal of Catalysis, 2018, 367: 269-282.
DU H, LIU Y N, SHEN C C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2017, 38(8): 1295-1306.
RAMYA J, SHOBANADEVI N, MANGAIYARKARASI S P, et al. One-pot hydrothermal synthesis of 2D-2D MoS2/CdS heterojunctions photocatalysts for photocatalytic H2 production under visible-light irradiation [J]. Journal of Materials Science: Materials in Electronics, 2023, 34(17): 1350.
JI M X, WEN J, XU Q Y, et al. Highly efficient visible-light-driven water splitting for H2 evolution and degradation of ECs using CdS/ZnIn2S4 S-scheme heterojunction with built-in electric field [J]. Fuel, 2024, 374: 132444.
MARSCHALL R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity [J]. Advanced Functional Materials, 2014, 24(7): 2421-2440.
SHI J Y, YANG L, ZHANG J, et al. Dual MOF-derived MoS2/CdS photocatalysts with rich sulfur vacancies for efficient hydrogen evolution reaction [J]. Chemistry, 2020, 28(64): e202202019.
YU J G, YU Y F, ZHOU P, et al. Morphology-dependent photocatalytic H2-production activity of CdS [J]. Applied Catalysis B: Environmental, 2014, 156/157: 184-191.
XU Y, ZHAO W W, XU R, et al. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution [J]. Chemical Communications, 2013, 49(84): 9803-9805.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构