浏览全部资源
扫码关注微信
1. 长江大学 机械工程学院,湖北 荆州 434023
2. 中国地质调查局广州海洋地质调查局,广东 广州 511458
3. 天然气水合物勘查开发国家工程研究中心,广东 广州 511458
4. 长江大学 石油工程学院,湖北 武汉 430074
王宗航(2000—),硕士研究生,研究方向为水合物开发理论与技术,E-mail:19966591590@163.com。
赵金(1988—),博士,副教授,研究方向为水合物开发理论、技术与教学,E-mail:zhaojin@yangtzeu.edu.cn。
网络出版日期:2025-02-09,
收稿日期:2024-07-16,
修回日期:2024-08-12,
移动端阅览
王宗航,赵金,申凯翔等.复合型抑制剂体系作用下水合物分解特性研究[J].低碳化学与化工,
WANG Zonghang,ZHAO Jin,SHEN Kaixiang,et al.Study on decomposition characteristics of hydrate under composite inhibitor systems[J].Low-carbon Chemistry and Chemical Engineering,
王宗航,赵金,申凯翔等.复合型抑制剂体系作用下水合物分解特性研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240301.
WANG Zonghang,ZHAO Jin,SHEN Kaixiang,et al.Study on decomposition characteristics of hydrate under composite inhibitor systems[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240301.
针对天然气水合物(简称“水合物”)堵塞油气管道后如何快速疏通,以及疏通过程水合物的分解问题,利用可视化水合物生成、分解与抑制评价实验装置,通过控制抑制剂浓度,研究了乙二醇(MEG)、聚乙烯吡咯烷酮(PVP)、氯化钠(NaCl)和抗冻蛋白(AFPs)等抑制剂及其复合体系(乙二醇、乙二醇+ PVP、乙二醇+ PVP + AFPs、乙二醇+ PVP + NaCl)作用下水合物分解特性,以及抑制剂间的协同作用。实验过程中,通过网格划分法量化水合物分解过程中的变化。结果表明,在促进水合物分解过程中,抑制剂浓度与促进分解效果间并非总呈正相关,乙二醇+ PVP体系的促进分解效果随PVP浓度增加先上升后下降,乙二醇+ PVP + NaCl体系的促进分解效果随NaCl浓度变化存在峰值。相比乙二醇体系,乙二醇+ PVP体系中PVP的存在降低了釜内压力变化速率,抑制了水合物分解。而在乙二醇+ PVP体系中加入NaCl(乙二醇+ PVP + NaCl体系),则可以有效提高釜内压力变化速率,促进水合物分解。当注入100 mL标记为20.0%乙二醇+ 0.5%PVP + 10.0%NaCl的溶液(配比约为20 mL乙醇、80 mL纯水、0.5 g PVP和10.0 g NaCl),300 min内能够完全分解由100 mL纯水生成的水合物,抑制剂协同作用明显。本研究所用复合型抑制剂可为解决水合物堵塞管道问题以及水合物开发提供参考。
To address the issue of quickly unblocking natural gas hydrate (referred to as “hydrates”) obstructions in oil and gas pipelines and the decomposition of hydrates during the unblocking process
a visual experimental apparatus for hydrate formation
decomposition and inhibition evaluation was utilized. By controlling the inhibitor concentration
the decomposition characteristics of hydrates under the action of inhibitors were investigated
such as ethylene glycol (MEG)
polyvinylpyrrolidone (PVP)
sodium chloride (NaCl)
antifreeze proteins (AFPs) and their composite systems (MEG
MEG + PVP
MEG + PVP + AFPs
MEG + PVP + NaCl). The synergistic effects among inhibitors were also examined. During the experiments
the grid partitioning method was employed to quantify the changes occurring during hydrate decomposition. The results indicate that the relationship between inhibitor concentration and decomposition promotion is not always positively correlated. For the MEG + PVP system
the decomposition-promoting effect first increase and then decrease with rising PVP concentrations. In the MEG + PVP + NaCl system
the decomposition-promoting effect show a peak with varying NaCl concentrations. Compared with the MEG system
the presence of PVP in the MEG + PVP system reduce the rate of pressure change in the reactor
thereby inhibiting hydrate decomposition. However
the addition of NaCl to the MEG + PVP system (forming the MEG + PVP + NaCl system) significantly increase the pressure change rate in the reactor
promoting hydrate decomposition. When 100 mL of a solution labeled as 20.0% MEG + 0.5% PVP + 10.0% NaCl (approximately 20 mL ethanol
80 mL pure water
0.5 g PVP and 10.0 g NaCl) was injected
the hydrate formed from 100 mL of pure water could be completely decomposed within 300 minutes
demonstrating significant synergistic effects among the inhibitors. The composite inhibitors used in this study can provide a reference for addressing hydrate pipeline blockages and advancing hydrate exploitation.
水合物复合型抑制剂分解协同压力变化速率
hydratecomposite inhibitordecompositionsynergypressure change rate
李清平, 周守为, 赵佳飞, 等 . 天然气水合物开采技术研究现状与展望[J]. 中国工程科学, 2022, 24(3): 214-224.
LI Q P, ZHOU S W, ZHAO J F, et al . Research status and prospect of natural gas hydrate mining technology [J]. China Engineering Science, 2022, 24(3): 214-224.
李瑞景, 刘海春, 李鑫源, 等 . 天然气水合物快速分解实验研究[J]. 当代化工, 2021, 50(10): 2317-2321.
LI R J, LIU H C, LI X Y, et al . Experimental study on the rapid decomposition of natural gas hydrate [J]. Contemporary Chemical Industry, 2021, 50(10): 2317-2321.
ZHU Y, LI X H, ZHAO C, et al . Decomposition characteristics of methane hydrate in porous media under continuous and intermittent microwave heating [J]. Fuel, 2023, 332: 126230.
黄婷, 李长俊, 李清平, 等 . 全透明高压反应釜甲烷水合物动力学实验[J]. 化工进展, 2020, 39(7): 2624-2631.
HUANG T, LI C J, LI Q P, et al . Experiment on methane hydrate kinetics in a high-pressure transparent autoclave [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2624-2631.
WANG J L, SUN J S, WANG R, et al . Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation [J]. Fuel, 2022, 321: 124012.
王云飞, 孙长宇, 喻西崇, 等 . 中试装置内水合物注抑制剂的分解规律[J]. 化工进展, 2022, 41(10): 5354-5362.
WANG Y F, SUN C Y, YU X C, et al . Analysis of the methane hydrate decomposition characteristics through inhibitor injection method by using a pilot scale reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5354-5362.
WU Q B, WANG Y M, ZHAN J . Effect of rapidly depressurizing and rising temperature on methane hydrate dissociation [J]. Journal of Natural Gas Chemistry, 2012, 21(1): 91-97.
YANG C F, ZI M C, WU G Z, et al . Concentration effect of kinetic hydrate inhibitor on hydrate formation and inhibition [J]. Fuel, 2022, 323: 124448.
左江伟, 岳铭亮, 吕晓方, 等 . 高压流动体系CO2水合物生长动力学特性[J]. 科学技术与工程, 2019, 19(20): 187-195.
ZUO J W, YUE M L, LV X F, et al . Growth kinetics of CO2 hydrate in high pressure flow system [J]. Science Technology and Engineering, 2019, 19(20): 187-195.
宋光春, 施政灼, 李玉星, 等 . 油水体系内水合物的生成: 温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(3): 1338-1345.
SONG G C, SHI Z Z, LI Y X, et al . Hydrate formation in oil-water systems: Investigations of the influences of temperature, pressure and rotation rate [J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1338-1345.
隋金昊, 王智, 梁璇玑, 等 . 动力学抑制剂与乙二醇协同作用下甲烷水合物再生成[J]. 化工进展, 2022, 41(10): 5373-5380.
SUI J H, WANG Z, LIANG X J, et al . Paired KHI-MEG for synergistic inhibition of methane hydrate reformation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5373-5380.
龙臻, 王谨航, 周雪冰, 等 . 含动力学抑制剂体系甲烷水合物微观分解过程[J]. 新能源进展, 2023, 11(3): 221-227.
LONG Z, WANG J H, ZHOU X B, et al . Microscopic decomposition behavior of methane hydrate formed in the presence of kinetic inhibitor [J]. Advances in new and renewable energy, 2023, 11(3): 221-227.
董福海, 臧小亚, 樊栓狮, 等 . 注甲醇溶液分解丙烷水合物实验模拟[J]. 石油化工高等学校学报, 2009, 22(3): 9-13.
DONG F H, ZANG X Y, FAN S S, et al . Experimental simulation of propane hydrate dissociation by methanol injection [J]. Journal of Petroleum and Chemical Engineering, 2009, 22(3): 9-13.
陈硕, 俞冬梅, 王树立, 等 . 蔗糖对四氢呋喃水合物分解平衡温度影响的实验研究[J]. 科学技术与工程, 2017, 17(11): 288-294.
CHEN S, YU D M, WANG S L, et al . The experimental research of the effect on tetrahydrofuran hydrate dissociation equilibrium temperature with sucrose [J]. Science Technology and Engineering, 2017, 17(11): 288-294.
张玉彬 . 钻井液处理剂水合物分解抑制性实验研究[J]. 应用化工, 2024, 53(5): 1076-1080.
ZHANG Y B . Experimental study on the inhibition of hydrate decomposition by drilling fluid treatment agents [J]. Applied Chemical Industry, 2024, 53(5): 1076-1080.
WANG L, SONG Z K, HUANG X, et al . Study on the influence of pressure reduction and chemical injection on hydrate decomposition [J]. Processes, 2022, 10(12): 2543.
闫柯乐, 任悦萌, 林雨 . 含动力学抑制剂体系甲烷水合物稳定性及分解行为研究[J]. 石油化工, 2022, 51(12): 1432-1437.
YAN K L, REN Y M, LIN Y . Experimental study on the stability and dissociation behavior of methane hydrate in the presence of kinetic inhibitor [J]. Petrochemical Technology, 2022, 51(12): 1432-1437.
毛港涛, 李治平, 王凯, 等 . 全可视化双反应釜内甲烷水合物生成与分解特征研究[J]. 特种油气藏, 2023, 30(3): 73-80.
MAO G T, LI Z P, WANG K, et al . Study on the generation and decomposition characteristics of methane hydrate in fully visible dual reactor [J]. Special Oil & Gas Reservoirs, 2023, 30(3): 73-80.
樊栓狮, 王燕鸿, 郎雪梅 . 天然气水合物动力学抑制技术研究进展[J]. 天然气工业, 2011, 31(12): 99-109+132.
FAN S S, WANG Y H, LANG X M . Progress in the research of kinetic hydrate inhibitors [J]. Natural gas industry, 2011, 31(12): 99-109+132.
RASOOLZADEH A, BAKHTYARI A, MEHRABI K, et al . Determination of clathrate hydrates stability conditions and water activity in aqueous solutions containing natural amino acid and its blend with ionic liquid, alcohol, and salt using a thermodynamic approach [J]. Fuel, 2022, 326: 124960.
SEMENOV A P, MENDGAZIEV R I, ISTOMIN V A, et al . Searching for synergy between alcohol and salt to produce more potent and environmentally benign gas hydrate inhibitors [J]. Chemical Engineering Science, 2024, 283: 119361.
王晓龙 . 单井降压、注乙二醇开采甲烷水合物实验研究[D]. 北京: 中国石油大学(北京), 2017.
WANG X L . Experimental study on methane hydrate production by single well depressurization and ethylene glycol injection [D]. Beijing: China University of Petroleum (Beijing), 2017.
CECILIE A G, MARTIN T S . Effects of PVCap on gas hydrate dissociation kinetics and the thermodynamic stability of the hydrates [J]. Energy & Fuels, 2017, 31(9): 9863-9873.
LIAO B, WANG J T, LI M C, et al . Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor [J]. Energy, 2023, 279: 128045.
李锐, 宁伏龙, 张凌, 等 . 低剂量水合物抑制剂的研究进展[J]. 石油化工, 2018, 47(2): 203-210.
LI R, NING F L, ZHANG L, et al . Progress in the research of the low dosage hydrate inhibitors [J]. Petrochemical Technology, 2018, 47(2): 203-210.
LIU F P, LI A R, QING S L, et al . Formation kinetics, mechanism of CO2 hydrate and its applications [J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112221.
WANG Y H, FAN S S, LANG X M . Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132.
NGUYEN N N, NGUYEN A V . Recent insights into the anomalous dual nature (both promotion and Inhibition) of chemical additives on gas hydrate formation [J]. Chemical Engineering Journal, 2023, 475: 146362.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构