浏览全部资源
扫码关注微信
西南化工研究设计院有限公司 工业排放气综合利用国家重点实验室,国家碳一化学工程技术研究中心, 四川 成都 610225
杜佳奇(1997—),硕士,助理工程师,研究方向为非均相催化,E-mail:dujiaqi@swchem.com。
王佳杰(1991—),博士,工程师,研究方向为新型低碳分子催化转化技术,E-mail:wangjiajie@swchem.com。
收稿日期:2024-06-26,
修回日期:2024-07-18,
纸质出版日期:2025-05-25
移动端阅览
杜佳奇,王小莉,王佳杰等.非热等离子体CH4-CO2重整产物分布调控的研究[J].低碳化学与化工,2025,50(05):77-82.
DU Jiaqi,WANG Xiaoli,WANG Jiajie,et al.Study on product distribution regulation of non-thermal plasma CH4-CO2 reforming[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):77-82.
杜佳奇,王小莉,王佳杰等.非热等离子体CH4-CO2重整产物分布调控的研究[J].低碳化学与化工,2025,50(05):77-82. DOI: 10.12434/j.issn.2097-2547.20240277.
DU Jiaqi,WANG Xiaoli,WANG Jiajie,et al.Study on product distribution regulation of non-thermal plasma CH4-CO2 reforming[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):77-82. DOI: 10.12434/j.issn.2097-2547.20240277.
为解决传统热催化转化CH
4
和CO
2
需要高温、高压条件的问题,实现两种温室气体的高效利用,可采用非热等离子体技术,在室温、常压下将CH
4
和CO
2
直接转化为高价值含氧化合物(甲醇、乙醇和乙酸等)。考察了反应气
n
(CO
2
):
n
(CH
4
)、反应气总流量及放电功率对反应气转化率和产物分布的调控,并研究了催化剂对该反应体系性能的影响。结果表明,反应气
n
(CO
2
):
n
(CH
4
)为3:1、反应气总流量为40 mL/m
in及放电功率为25 W时,含氧化合物选择性为75%,其中乙酸选择性为47%。使用Cu催化剂时,丙酸选择性可达36%;使用ZnO催化剂时,含氧化合物选择性增大至92%,主要产物甲酸甲酯选择性为37%。反应气
n
(CO
2
):
n
(CH
4
)越大,越有利于反应气转化及乙酸形成;反应气总流量越小,反应气转化率越大;放电功率越大,反应气转化率越大,但过大的放电功率会导致含氧化合物选择性减小。在该反应体系中使用催化剂,可生成更具经济价值的新产物。
To address the issue that the traditional thermal catalytic conversion of CH
4
and CO
2
requires high temperature and high pressure and achieve the efficient utilization of two greenhouse gases
non-thermal plasma technology can be used to directly convert CH
4
and CO
2
to high-value chemicals (methanol
ethanol and acetic acid
etc.) at room temperature and atmospheric pressure. The regulation of reaction gas conversion rates and product distributions by reaction gas
n
(CO
2
):
n
(CH
4
)
total reaction gas flow rates and discharge powers was investigated
and the effects of catalysts on the performances of reaction system were studied. The results show that when the
n
(CO
2
):
n
(CH
4
) is 3:1
and total reaction gas flow rate is 40 mL/min
and discharge power is 25 W
the selectivity of oxygenates is 75%
and the selectivity of acetic acid is 47%. When Cu catalyst is used
the selectivity of propanoic acid can reach 36%. When ZnO catalyst is used
the selectivity of oxygenates increases to 92%
and the selectivity of the main product methyl formate reaches 37%. The larger the reaction gas
n
(CO
2
):
n
(CH
4
)
the more favorable it is for the reaction gas conversion and formation of acetic acid. The smaller the total reaction gas flow rate
the larger the conversion rate of reaction gas. The larger the discharge power
the larger the conversion rate of reaction gas
but excessive discharge power will lead to a decrease in selectivity of oxygenates. The use of catalysts in this reaction
system can generate new products with greater economic value.
叶泽甫 , 朱路奇 , 孟献梁 , 等 . 等离子体作用下CH 4 -CO 2 重整制取合成气工艺过程数值模拟 [J ] . 低碳化学与化工 , 2023 , 48 ( 2 ): 42 - 51 .
YE Z F , ZHU L Q , MENG X L , et al . Process numerical simulation of CH 4 -CO 2 reforming to synthesis gas under plasma [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 2 ): 42 - 51 .
黄伟 , 陶诗琪 . CH 4 和CO 2 偶联直接合成乙酸的研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 2 ): 1 - 13 .
HUANG W , TAO S Q . Research progress in direct synthesis of acetic acid by coupling of CH 4 and CO 2 [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 2 ): 1 - 13 .
TURNHOUT J V , ACETO D , TRAVERT A , et al . Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell [J ] . Catalysis Science & Technology , 2022 , 12 ( 22 ): 6676 - 6686 .
LIU S , WINTER L R , CHEN J G . Review of plasma-assisted catalysis for selective generation of oxygenates from CO 2 and CH 4 [J ] . ACS Catalysis , 2020 , 10 ( 4 ): 2855 - 2871 .
徐锋 , 王玉明 , 李凡 , 等 . 介质阻挡放电条件下甲烷水蒸气重整和部分氧化反应制氢 [J ] . 燃料化学学报 , 2021 , 49 ( 3 ): 366 - 372 .
XU F , WANG Y M , LI F , et al . Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge [J ] . Journal of Fuel Chemistry and Technology , 2021 , 49 ( 3 ): 366 - 372 .
孙进桃 , 陈琪 , 秦婉月 . 等离子体催化重整CH 4 /CO 2 中的等离子体强化表面反应动力学研究 [J ] . 石油学报(石油加工) , 2023 , 39 ( 5 ): 987 - 994 .
SUN J T , CHEN Q , QIN W Y . Kinetic investigation of plasma-enhanced surface reaction in plasma catalytic CH 4 /CO 2 reforming [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2023 , 39 ( 5 ): 987 - 994 .
KHOJA A H , TAHIR M , AMIN N A S . Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations [J ] . Energy Conversion and Management , 2017 , 144 : 262 - 274 .
WANG Y Z , FAN L H , XU H L , et al . Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO 2 and CH 4 over copper-based catalysts [J ] . Applied Catalysis B: Environmental , 2022 , 315 : 121583 .
王佳杰 , 毛震波 , 李军 , 等 . 等离子体CO 2 -CH 4 干重整反应技术进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 78 - 88 .
WANG J J , MAO Z B , LI J , et al . Progress in plasma-driven dry reforming of CO 2 and CH 4 [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 78 - 88 .
WANG Y L , YANG W J , XU S S , et al . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis [J ] . Journal of the American Chemical Society , 2022 , 144 ( 27 ): 12020 - 12031 .
SUN Y H , WU J L , WANG Y L , et al . Plasma-catalytic CO 2 hydrogenation over a Pd/ZnO catalyst: In situ probing of gas-phase and surface reactions [J ] . JACS Au , 2022 , 2 ( 8 ): 1800 - 1810 .
MEI D H , ZHANG P , DUAN G H , et al . CH 4 reforming with CO 2 using a nanosecond pulsed dielectric barrier discharge plasma [J ] . Journal of CO 2 Utilization , 2022 , 62 : 102073 .
高远 , 窦立广 , 李江伟 , 等 . 低温等离子体-催化剂协同催化CO 2 转化进展 [J ] . 高电压技术 , 2022 , 48 ( 4 ): 1607 - 1619 .
GAO Y , DOU L G , LI J W , et al . Recent advances in catalyzing CO 2 conversion by synergistic low-temperature plasma and catalysts [J ] . High Voltage Engineering , 2022 , 48 ( 4 ): 1607 - 1619 .
MEI D H , SHEN X Q , LIU S Y , et al . Plasma-catalytic reforming of biogas into syngas over Ni-based bimetallic catalysts [J ] . Chemical Engineering Journal , 2023 , 462 : 142044 .
WANG X R , GUO W , XU S S , et al . Stainless steel membrane distributor-type dielectric barrier discharge plasma reactor for co-conversion of CH 4 /CO 2 [J ] . AIChE Journal , 2023 , 69 ( 7 ): e18059 .
LI J J , CHANSAI S , HARDACRE C , et al . Non thermal plasma assisted water-gas shift reactions under mild conditions: State of the art and a future perspective [J ] . Catalysis Today , 2022 , 423 : 113956 .
ZENG Y X , CHEN G X , BAI Q Y , et al . Biogas reforming for hydrogen-rich syngas production over a Ni-K/Al 2 O 3 catalyst using a te mperature-controlled plasma reactor [J ] . International Journal of Hydrogen Energy , 2022 , 48 ( 16 ): 6192 - 6203 .
朱丽华 , 董昊 , 于淼 , 等 . CH 4 -CO 2 低温等离子体重整制合成气的研究 [J ] . 应用化工 , 2023 , 52 ( 11 ): 3042 - 3046 .
ZHU L H , DONG H , YU M , et al . Study on CO 2 reforming of CH 4 to synthesis gas by low temperature plasma [J ] . Applied Chemical Industry , 2023 , 52 ( 11 ): 3042 - 3046 .
WANG L , YI Y H , WU C F , et al . One-step reforming of CO 2 and CH 4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis [J ] . Angewandte Chemie International Edition , 2017 , 56 ( 44 ): 13679 - 13683 .
WANG Y L , CHEN Y Z , HARDING J , et al . Catalyst-free single-step plasma reforming of CH 4 and CO 2 to higher value oxygenates under ambient conditions [J ] . Chemical Engineering Journal , 2022 , 450 : 137860 .
LI D , ROHANI V , RAMASWAMY A P , et al . Orientating the plasma-catalytic conversion of CO 2 and CH 4 toward liquid products by using a composite catalytic bed [J ] . Applied Catalysis A: General , 2022 , 650 : 119015 .
张可羡 , 蔡洪城 , 张勇 , 等 . 沉淀剂对Cu-Zn-Al-Mg甲醇合成催化剂性能的影响 [J ] . 工业催化 , 2021 , 29 ( 3 ): 55 - 60 .
ZHANG K X , CAI H C , ZHANG Y , et al . Effect of precipitant on catalytic properties of Cu-Zn-Al-Mg methanol synthesis catalyst [J ] . Industrial Catalysis , 2021 , 29 ( 3 ): 55 - 60 .
WANG A G , HARRHY J H , MENG S J , et al . Nonthermal plasma-catalytic conversion of biogas to liquid chemicals with low coke formation [J ] . Energy Conversion and Management , 2019 , 191 : 93 - 101 .
MARTINI L M , DILECCE G , GUELLA G , et al . Oxidation of CH 4 by CO 2 in a dielectric barrier discharge [J ] . Chemical Physics Letters , 2014 , 593 : 55 - 60 .
WANG J J , ALQAHTANI M S , WANG X X , et al . One-step plasma-enabled catalytic carbon dioxide hydrogenation to higher hydrocarbons: Significance of catalyst-bed configuration [J ] . Green Chemistry , 2021 , 23 ( 4 ): 1642 - 1647 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构