浏览全部资源
扫码关注微信
1.石河子大学 化学化工学院,新疆 石河子 832003
2.新疆天业(集团)有限公司,新疆 石河子 832003
张奥森(1998—),硕士研究生,研究方向金属有机框架材料开发及催化性能,E-mail:1206443868@qq.com。
王贺云(1975—),博士,教授,研究方向功能高分子材料,E-mail:whyun@shzu.edu.cn。
网络出版日期:2025-01-09,
收稿日期:2024-06-15,
修回日期:2024-07-23,
移动端阅览
张奥森,张忠琪,沈英杰等.具有缺陷结构的UiO-66-SO3H-X催化CO2和CH3OH合成DMC研究[J].低碳化学与化工,
ZHANG Aosen,ZHANG Zhongqi,SHEN Yingjie,et al.Study on catalytic performances of UiO-66-SO3H-X with defective structure for synthesis of DMC from CO2 and CH3OH[J].Low-carbon Chemistry and Chemical Engineering,
张奥森,张忠琪,沈英杰等.具有缺陷结构的UiO-66-SO3H-X催化CO2和CH3OH合成DMC研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240263.
ZHANG Aosen,ZHANG Zhongqi,SHEN Yingjie,et al.Study on catalytic performances of UiO-66-SO3H-X with defective structure for synthesis of DMC from CO2 and CH3OH[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240263.
CO
2
大量排放造成全球变暖引起了广泛关注,如何减少CO
2
排放并将其转化为高附加值化学品已成为研究热点。以2-巯基苯甲酸(MBA)和对苯二甲酸(H
2
BDC)作为配体,合成了一系列UiO-66-SH-X,然后利用H
2
O
2
氧化制备了UiO-66-SO
3
H-X(X =
n
(MBA):(
n
(H
2
BDC) +
n
(MBA)))催化剂。研究了X对UiO-66-SO
3
H-X催化剂物理化学性质、催化性能和重复使用性的影响。结果表明,UiO-66-SO
3
H-X具有良好的晶体结构,随着X增大,UiO-66-SO
3
H-X比表面积和平均孔径迅速减小。与UiO-66相比,UiO-66-SO
3
H-X催化性能更优,其中UiO-66-SO
3
H-0.3催化性能最优。在温度140 ℃、CO
2
压力3.5 MPa和反应时间8 h条件下,DMC收率为0.92%,较UiO-66提高2.83倍。UiO-66-SO
3
H-0.3具有良好的水热稳定性,经过3次循环测试后,活性比为92.6%。
The global warming caused by large amount of CO
2
emissions has attracted wide attention. How to reduce CO
2
emissions and transform them into high value-added chemicals has become a research hotspot. A series of UiO-66-SH-X were synthesized using 2-mercaptobenzoic acid (MBA) and terylene acid (H
2
BDC) as ligands
and then UiO-66-SO
3
H-X catalysts (X =
n
(MBA):(
n
(H
2
BDC) +
n
(MBA)) ) were prepared by H
2
O
2
oxidation. The effects of X on the physical and chemical properties
catalytic performance and reusability of UiO-66-SO
3
H-X were studied. The results show that UiO-66-SO
3
H-X has great crystal structure. The
specific surface area and average pore size of UiO-66-SO
3
H-X decrease rapidly with the increase of X. Compared with UiO-66
UiO-66-SO
3
H-X has better catalytic performance and UiO-66-SO
3
H-0.3 shows the best catalytic performance. Under the condition of temperature of 140 ℃
CO
2
pressure of 3.5 MPa and reaction time of 8 h
the yield of DMC is 0.92%
which is 2.83 times higher than that of UiO-66. UiO-66-SO
3
H-0.3 has great hydrothermal stability
and the activity ratio can remain 92.6% after three catalytic reaction cycles.
CO2碳酸二甲酯UiO-66连接体缺陷酸性位点
carbon dioxidedimethyl carbonateUiO-66linker defectacid site
赵佳慧, 郭彬. 碳中和视角下二氧化碳排放驱动因素分析[J]. 煤炭经济研究, 2023, 43(1): 48-54.
ZHAO J H, GUO B. Analysis of driving factors of carbon dioxide emissions from the perspective of carbon neutrality [J]. Coal Economic Research. 2023, 43(1): 48-54.
顾永正, 王天堃, 黄艳, 等. 燃煤电厂二氧化碳捕集利用与封存技术及工程应用[J]. 洁净煤技术, 2023, 29(4): 98-108.
GU Y Z, WANG T K, HUANG Y, et al. Carbon dioxide capture, utilization and storage technology and engineering application for coal-fired power plants [J]. Clean Coal Technology, 2023, 29(4): 98-108.
李波. 应对气候变化的有效途径: 二氧化碳捕集与封存[J]. 中国人口·资源与环境, 2011, 21(S1): 517-520.
LI B. Effective ways to address climate change: Carbon dioxide capture and storage [J]. China Population, Resources and Environment, 2011, 21(S1): 517-520.
郝永超. 二氧化碳捕集与封存的研究[J]. 煤炭与化工, 2015, 38(1): 68-70.
Hao Y C. Carbon dioxide capture and storage research [J]. Coal and Chemical Industry, 2015, 38(1): 68-70.
薛建荣, 钟宏, 符剑刚. 碳酸二甲酯的用途及合成研究进展[J]. 化工技术与开发, 2006, 35(3): 8-13.
XUE J R, ZHONG H, FU J G. Usage of dimethyl carbonate and its synthesis development [J]. Technology & Development of Chemical Industry, 2006, 35(3): 8-13.
屈强好. 碳酸二甲酯的市场需求和生产技术进展[C]//中国能源化工发展趋势暨氮肥工业发展策略研讨会. 无锡: 2005.
QU Q H. Market demand and production technology progress of dimethyl carbonate [C]// China energy chemical Industry development trend and nitrogen fertilizer industry development strategy seminar. Wuxi: 2005.
方云进, 肖文德. 绿色工艺的原料——碳酸二甲酯[J]. 化学通报, 2000, 63(9): 19-25+7.
FANG Y J, XIAO W D. Material of green technology—dimethyl carbonate [J]. Chemistry, 2000, 63(9): 19-25+7.
赵新强, 王延吉, 李芳, 等. 用碳酸二甲酯代替光气合成甲苯二异氰酸酯Ⅰ.甲苯二氨基甲酸甲酯的催化合成[J]. 石油化工, 1999, 28(9): 611-614.
ZHAO X Q, WANG Y J, LI F, et al. Synthesis of toluene diisocyanate with dimethyl carbonate instead of phosgene Ⅰ. Catalytic synthesis of toluene dicarbamate [J]. Petrochemical Technology, 1999, 28(9): 611-614.
刘斌, 喻健, 李聪明, 等. 二氧化碳直接合成碳酸二甲酯研究进展[J]. 天然气化工—C1化学与化工, 2018, 43(2): 119-126.
LIU B, YU J, LI C M, et al. Progress in direct synthesis of dimethyl carbonate from CO2 [J]. Natural Gas Chemical Industry, 2018, 43(2): 119-126.
陈红萍, 梁英华, 郑小满, 等. CO2和甲醇直接合成碳酸二甲酯的Fe-Zr-O催化剂制备和性能研究[J]. 高校化学工程学报, 2014, 28(4): 745-751.
CHEN H P, LIANG Y H, ZHENG X M, et al. Preparation and catalytic performance of Fe-Zr-O catalysts for direct synthesis of dimethyl carbonate using CO2 and methanol [J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(4): 745-751.
TAMBOLI A H, CHAUGULE A A, Kim H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol [J]. Chemical Engineering Journal, 2017, 323: 530-544.
肖雪, 路嫔, 韩媛媛, 等. 二氧化碳与甲醇合成碳酸二甲酯反应的热力学探讨[J]. 天然气化工—C1化学与化工, 2007, 32(2): 34-37.
XIAO X, LU P, HAN Y Y, et al. Thermodynamics of dimethyl carbonate synthesis from carbon dioxide and methanol [J]. Natural Gas Chemical Industry, 2007, 32(2): 34-37.
KABRA S. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide: A thermodynamic and experimental study [J]. The Journal of Supercritical Fiulds, 2016, 117: 98-107.
陈磊. 氧化铈催化二氧化碳与甲醇直接合成碳酸二甲酯原位红外研究[D]. 天津: 天津大学, 2014.
CHEN L. An in-situ FTIR study on CeO2 catalysts for direct synthesis of dimethyl carbonate from carbon dioxide and methanol [D]. Tianjin: Tianjin University, 2014.
周奇志. 二氧化碳和甲醇直接合成碳酸二甲酯的研究进展[J]. 化学通报, 2009, 72(3): 222-228.
ZHOU Q Z. Progress in study on the synthesis of dimethyl carbonate from carbon dioxide and methanol [J]. Chemistry, 2009, 72(3): 222-228.
陈红萍. CO2和甲醇直接合成碳酸二甲酯非均相催化体系的研究[D]. 天津: 河北工业大学, 2014.
CHEN H P. Heterogeneous catalytic systems for direct synthesis of dimethyl carbonate from carbon dioxide and methanol [D]. Tianjin: Hebei University of Technology, 2014.
TOMISHIGE K, IKEDA Y, SAKAIHORI T, et al. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide [J]. Journal of Catalysis, 2000, 192(2): 355-362.
ZHANG H G, LI J Z, TAN Q, et al. Metal-organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives [J]. Chemistry-A European Journal, 2018, 24(69): 18137-18157.
刘丰盛, 董昊, 王涛, 等. 金属有机骨架材料(MOFs)CO2捕集和转化研究进展[J]. 煤炭科学技术, 2022, 50(6): 117-135.
LIU F S, DONG H, WANG T, et al. Research progress of metal-organic frameworks (MOFs) in CO2 capture and transformation [J]. Coal Science and Technology, 2022, 50(6): 117-135.
郑奉斌, 王琨, 林田, 等. 金属有机骨架封装金属纳米粒子复合材料的制备及其催化应用研究进展[J]. 化学学报, 2023, 81(6): 669-680.
ZHENG F B, WANG K, LIN T, et al. Research progress on the preparation of metal-organic frameworks encapsulated metal nanoparticle composites and their catalytic applications [J]. Acta Chimica Sinica, 2023, 81(6): 669-680.
魏娜, 孙美娜, 赵震. UiO-66衍生材料催化二氧化碳环加成反应研究进展[J]. 沈阳师范大学学报(自然科学版), 2023, 41(1): 18-24.
WEI N, SUN M N, ZHAO Z. Research progress in carbon dioxide cycloaddition catalyzed by UiO-66 derivatives [J]. Journal of Shenyang Normal University (Natural Science Edition), 2023, 41(1): 18-24.
汤雅岑, 刘兴燕. 一种具有连接缺陷的Ti基MOF材料的制备及其应用: 114682301A[P]. 2022-07-01.
TANG Y C, LIU X Y. Preparation and application of a Ti-based MOF material with connection defects: 114682301A [P]. 2022-07-01.
HARDIAN R, DISSEGNAL S, ULLRICH A, et al. Tuning the properties of MOF-808 via defect engineering and metal nanoparticle encapsulation [J]. Chemistry—A European Journal, 2021, 27(22): 6804-6814.
XUAN K, PU Y F, LI F, et al. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66 [J]. Journal of CO2 Utilization, 2018, 27: 272-282.
VANDICHEL M, HAJEL J, VERMOORTELE F, et al. Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: A theoretical rationalization [J]. CrystEngComm, 2015, 17(2): 395-406.
JIANG H, XUE, C, et al. Acid regulation of defective sulfonic-acid-functionalized UiO-66 in the esterification of cyclohexene with formic acid [J]. Catalysis Letters, 2023, 153: 836-849.
DESIDERY L, YUSUBOV M S, ZHUIYKOV S,et al. Fully-sulfonated hydrated UiO-66 as efficient catalyst for ethyl levulinate production by esterification [J]. Catalysis Communications, 2018, 117: 33-37.
吴艳阳, 孙晔, 毛星星, 等. UiO-66孔道调控及四甲苯吸附分离性能的实验研究[J]. 实验室研究与探索, 2023, 42(6): 1-4+50.
WU Y Y, SUN Y, MAO X X, et al. Experimental research on pore regulation of UiO-66 and its adsorption of tetramethylbenzenes [J]. Research and Exploration in Laboratory, 2023, 42(6): 1-4+50.
HANGARTER C M, DYATKIN B, LASKOSKI M, et al. A combined theoretical and experimental characterization of a zirconium MOF with potential application to supercapacitors [J]. Applied Magnetic Resonance, 2022, 53: 915-930.
ABDELHAMID H N. UiO-66 as a catalyst for hydrogen production via the hydrolysis of sodium borohydride [J]. Dalton Transactions, 2020, 49(31): 10851-10857.
YOO D K, LEE G, MONDOL M M H, et al. Preparation and applications of metal-organic frameworks composed of sulfonic acid [J]. Coordination Chemistry Reviews, 2023, 474: 214868.
徐菁. 紫外光辐照法在聚合物表面引入小分子官能团的研究[D]. 北京: 北京化工大学, 2010.
XU J. A universal photochemical strategy to introduce monolayer of specific functional groups onto the surface of polymeric substrates [D]. Beijing: Beijing University of Chemical Industry, 2010.
陈煜太, 黄威, 姜红, 等. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 5-11.
CHEN Y T, HUANG W, JIANG H, et al. Synthesis of the carboxylic and sulfonic SiO2 and its application to latent fingermark development [J]. Materials Reports, 2022, 36(5): 5-11.
DE LA FLOR D, LOPEA-AGUADO C, PANIAGUA M, et al. Defective UiO-66(Zr) as an efficient catalyst for the synthesis of bio jet-fuel precursors via aldol condensation of furfural and MIBK [J]. Journal of Catalysis, 2021, 401: 27-39.
LYU J, LIU H X, ZENG Z L Z, et al. Metal-organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution [J]. Industrial & Engineering Chemistry Research, 2017, 56(9): 2565-2572.
李想, 张艳梅, 张静, 等. UiO-66-NH2负载Pd催化剂的合成、表征及其催化反应[J]. 辽宁石油化工大学学报, 2017,37(1): 8-13.
LI X, ZHANG Y M, ZHANG J, et al. Synthesis, characterization and catalytic reaction of UiO-66-NH2 supported Pd catalyst [J]. Journal of Liaoning Petrochemical University, 2017,37(1): 8-13.
SHAN B H, JAMES J B, et al. Influences of deprotonation and modulation on nucleation and growth of UiO-66: Intergrowth and orientation [J]. The Journal of Physical Chemistry C, 2018, 122(4): 2200-2206.
TANAKA Y, KITAMURAL Y, KAWANO R, et al. Competing roles of two kinds of ligand during nonclassical crystallization of pillared-layer metal-organic frameworks elucidated using microfluidic systems [J]. Chemistry-A European Journal, 2020, 26(41): 8889-8896.
MARTA B, PEDRO L, CARLOS P C, et al. Catalytic advantages of SO3H-Modified UiO-66(Zr) materials obtained via microwave synthesis in friedel-crafts acylation reaction [J]. Inorganic Chemistry, 2024, 63(38): 17460-17468.
JIANG Y Y, ZHOU R R, ZHAO H Y, et al. A highly active and stable organic-inorganic combined solid acid for the transesterification of glycerol under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(10): 1772-1781.
YE H S, ZHAO H Y, JIANG Y Y, et al. Catalytic transfer hydrogenation of the C==O Bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles [J]. ACS Applied Nano Materials, 2020, 3(12): 12260-12268.
VALENZANO L, CIVALLERI B, CHAVAN S, et al. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory [J]. Chemistry of Materials, 2011, 23(7): 1700-1718.
ZHANG F M, ZHENG S, XIAO Q, et al. Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water [J]. Green chemistry, 2016, 18(9): 2900-2908.
谢有为, 陈静, 于峰, 等. 调节剂对UiO-66在糠醛转移加氢制糠醇反应中催化性能的影响[J]. 化工进展, 2023, 42(11): 5756-5763.
XIE Y W, CHEN J, YU F, et al. Effect of regulators on the catalytic performance of UiO-66 in furfural transfer hydrogenation to furfuryl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5756-5763.
曹映玉, 孙风娟, 王亚权. 新型磺酸基功能化的介孔MCM-41分子筛的合成及其性能研究[J]. 化学试剂, 2011, 33(7): 583-587.
CAO Y Y, SUN F J, WANG Y Q. Synthesis and properties of novel sulfonic acid-functionalized mesoporous MCM-41 [J]. Chemical Reagents, 2011, 33(7): 583-587.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构