浏览全部资源
扫码关注微信
太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
刘 思(1999—),硕士研究生,研究方向为多相催化基础理论,E-mail:liusi0672@link.tyut.edu.cn。
章日光(1981—),博士,教授,研究方向为多相催化基础理论,E-mail:zhangriguang@tyut.edu.cn。
收稿日期:2024-05-11,
修回日期:2024-07-08,
纸质出版日期:2025-03-25
移动端阅览
刘思,章日光.Li掺杂La2O3催化剂上甲烷氧化偶联反应中氧物种迁移及类型对CH4解离影响的DFT研究[J].低碳化学与化工,2025,50(03):12-22.
LIU Si,ZHANG Riguang.DFT study on effects of oxygen species migration and its type on CH4 dissociation in oxidative coupling of methane reaction on Li-doped La2O3 catalysts[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):12-22.
刘思,章日光.Li掺杂La2O3催化剂上甲烷氧化偶联反应中氧物种迁移及类型对CH4解离影响的DFT研究[J].低碳化学与化工,2025,50(03):12-22. DOI: 10.12434/j.issn.2097-2547.20240209.
LIU Si,ZHANG Riguang.DFT study on effects of oxygen species migration and its type on CH4 dissociation in oxidative coupling of methane reaction on Li-doped La2O3 catalysts[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):12-22. DOI: 10.12434/j.issn.2097-2547.20240209.
La
2
O
3
催化剂广泛应用于甲烷氧化偶联(OCM)反应,但确定该反应中关键氧物种的类型及其对甲烷解离活性的影响仍具有挑战性。基于密度泛函理论(DFT)计算,探究了Li掺杂La
2
O
3
催化剂上氧迁移过程、氧迁移过程中形成的氧物种类型以及氧物种类型对甲烷解离活性的影响。结果表明,对于Li/O
v
-La
2
O
3
催化剂,O
2
在催化剂表面氧空位上形成表面超氧物种
<math id="M1"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365664&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365657&type=
3.38666677
(1st)
,随后表面超氧物种
<math id="M2"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365678&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365694&type=
3.38666677
(1st)
中的一个O迁移到次表层形成次表层过氧物种
<math id="M3"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365706&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365669&type=
4.14866638
(2nd)
,即Li/O
v
-La
2
O
3
-
<math id="M4"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365683&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365699&type=
4.14866638
(2nd)
催化剂。对于Li/La
2
O
3
催化剂,O
2
解离与催化剂表面晶格氧结合生成两个表面超氧物种
<math id="M5"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365686&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365687&type=
3.38666677
(1st)
,随后表面超氧物种
<math id="M6"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365748&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365722&type=
3.38666677
中的一个O迁移到次表层形成次表层过氧物种
<math id="M7"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365723&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365737&type=
4.14866638
(2nd)
,即Li/La
2
O
3
-
<math id="M8"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365725&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365753&type=
3.38666677
(1st)
+
<math id="M9"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365683&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365699&type=
4.14866638
(2nd)
催化剂。Li/O
v
-La
2
O
3
-
<math id="M10"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365754&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365740&type=
4.14866638
(2nd)
和Li/La
2
O
3
-
<math id="M11"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365767&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365741&type=
3.38666677
(1st)
+
<math id="M12"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365754&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365740&type=
4.14866638
(2nd)
催化剂中的次表层过氧物种
<math id="M13"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365754&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365740&type=
4.14866638
(2nd)
提高了催化剂的甲烷解离性能,并使甲烷自发解离为吸附态CH
3
和H。这主要归因于次表层过氧物种
<math id="M14"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365754&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365740&type=
4.14866638
(2nd)
的存在使得催化剂表面O处于缺电子状态,进而提高了催化剂的甲烷解离性能。
La
2
O
3
catalysts have been widely used in the oxidative coupling of methane (OCM) reaction
however
identifying the types of key oxygen species and its influence on methane dissociation activity is still a challenge. The oxygen migration
the types of oxygen species formed during oxygen migration and the influence of oxygen species types on methane dissociation activity over Li-doped La
2
O
3
catalysts were investigated by density functional theory (DFT) calculation. The results show that for the Li/O
v
-La
2
O
3
catalysts
O
2
forms the surface superoxide species
<math id="M15"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365768&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365757&type=
3.30200005
(1st)
at the oxygen vacancies on the surface of the catalysts
and then one O of the surface superoxide species
<math id="M16"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365758&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365744&type=
3.30200005
(1st)
migrates to the subsurface layer to form the subsurface peroxide species
<math id="M17"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365745&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365779&type=
4.23333359
(2nd)
namely the Li/O
v
-La
2
O
3
-
<math id="M18"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365747&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365793&type=
4.14866638
(2nd)
catalysts. For the Li/La
2
O
3
catalysts
O
2
dissociates and combines with the lattice oxygen on the surface of the catalysts to form two surface superoxide species
<math id="M19"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365758&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365744&type=
3.30200005
(1st)
and then one O of the surface superoxide species
<math id="M20"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365794&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365795&type=
3.30200005
migrates to the subsurface layer to form the subsurface peroxide species
<math id="M21"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365796&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365797&type=
4.14866638
(2nd)
namely the Li/-La
2
O
3
-
<math id="M22"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365758&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365744&type=
3.30200005
(1st)
+
<math id="M23"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365745&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365779&type=
4.23333359
(2nd)
catalysts. Li/O
v
-La
2
O
3
-
<math id="M24"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365796&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365797&type=
4.14866638
(2nd)
and Li/La
2
O
3
-
<math id="M25"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365798&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365825&type=
3.30200005
(1st)
+
<math id="M26"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365826&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365788&type=
4.23333359
(2nd)
catalysts with subsurface
<math id="M27"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365801&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365828&type=
4.23333359
(2nd)
species
which enhance CH
4
dissociation ability and make CH
4
spontaneous dissociation occur to form adsorbed state CH
3
and H. This is mainly due to the presence of the subsurface peroxide species
<math id="M28"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365817&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365829&type=
4.14866638
(2nd)
which makes the surface O of the catalysts at a state of electron deficiency and improves the methane dissociation ability of the catalyst.
GALADIMA A , MURAZA O . Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review [J ] . Journal of Industrial and Engineering Chemistry , 2016 , 37 : 1 - 13 .
余海杰 , 李潇 , 冉建速 , 等 . 甲烷选择性氧化制含氧化合物催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 9 - 21 .
YU H J , LI X , RAN J S , et al . Research progress in catalysts for selective oxidation of methane to oxygenated compounds [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 9 - 21 .
HUANG P , ZHAO Y H , ZHANG J , et al . Exploiting shape effects of La 2 O 3 nanocatalysts for oxidative coupling of methane reaction [J ] . Nanoscale , 2013 , 5 ( 22 ): 10844 - 10848 .
FENG R , NIU P Y , HOU B , et al . Synthesis and characterization of the flower-like La x Ce 1- x O 1.5+ δ catalyst for low-temperature oxidative coupling of methane [J ] . Journal of Energy Chemistry , 2022 , 67 : 342 - 353 .
丁大为 , 季生福 , 王开 , 等 . BaCO 3 /La 2 O 3 催化剂低温甲烷氧化偶联及床层热点效应 [J ] . 天然气化工—C1化学与化工 , 2008 , 33 ( 4 ): 6 - 12 .
DING D W , JI S F , WANG K , et al . Low temperature oxidative coupling of methane over BaCO 3 /La 2 O 3 catalysts and thermal effect of catalyst bed [J ] . Natural Gas Chemical Industry , 2008 , 33 ( 4 ): 6 - 12 .
ZAVYALOVA U , HOLENA M , SCHLOGL R , et al . Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts [J ] . ChemCatChem , 2011 , 3 ( 12 ): 1935 - 1947 .
LUNSFORD J H . The catalytic oxidative coupling of methane [J ] . Angewandte Chemie International Edition , 1995 , 34 ( 9 ): 970 - 980 .
LUNSFORD J H . The catalytic conversion of methane to higher hydrocarbons [J ] . Catalysis Today , 1990 , 6 ( 3 ): 235 - 259 .
CHRÉTIEN S , METIU H . Acid-base interaction and its role in alkane dissociative chemisorption on oxide surfaces [J ] . The Journal of Physical Chemistry C , 2014 , 118 ( 47 ): 27336 - 27342 .
SUN J J , THYBAUT J W , MARIN G B . Microkinetics of methane oxidative coupling [J ] . Catalysis Today , 2008 , 137 ( 1 ): 90 - 102 .
CONWAY S J , WANG D J , LUNSFORD J H . Selective oxidation of methane and ethane over Li + -MgO-Cl - catalysts promoted with metal oxides [J ] . Applied Catalysis A: General , 1991 , 79 ( 1 ): 1 - 5 .
WU X Y , FANG Z , PAN H , et al . Active oxygen species on Mg-La mixed oxides: The effect of Mg and La oxide interactions [J ] . Catalysis Science & Technology , 2017 , 7 ( 4 ): 797 - 801 .
OLIVOS-SUAREZ A I , SZÉCSÉNYI A , HENSEN E J M , et al . Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: Challenges and opportunities [J ] . ACS Catalysis , 2016 , 6 ( 5 ): 2965 - 2981 .
WANG L H , YI X D , WENG W Z , et al . Isotopic oxygen exchange and EPR studies of superoxide species on the SrF 2 /La 2 O 3 catalyst [J ] . Catalysis Letters , 2007 , 118 : 238 - 243 .
LUNSFORD J H , YANG X M , HALLER K , et al . In situ Raman spectroscopy of peroxide ions on barium/magnesium oxide catalysts [J ] . The Journal of Physical Chemistry , 1993 , 97 ( 51 ): 13810 - 13813 .
XU J W , ZHANG Y , XU X L , et al . Constructing La 2 B 2 O 7 (B = Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: The effect of phase structures, superoxide anions, and alkalinity on the reactivity [J ] . ACS Catalysis , 2019 , 9 ( 5 ): 4030 - 4045 .
PALMER M S , NEUROCK M , OLKEN M M . Periodic density functional theory study of methane activation over La 2 O 3 : Activity of O 2- , O - , <math id="M126"><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math> https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366383&type= 3.30200005 https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366371&type= 4.31799984 , oxygenpoint defect, and Sr 2+ -doped surface sites [J ] . Journal of the American Chemical Society , 2002 , 124 ( 28 ): 8452 - 8461 .
YAMAMOTO H , CHU H Y , XU M T , et al . Oxidative coupling of methane over a Li + /MgO catalyst using N 2 O as an oxidant [J ] . Journal of Catalysis , 1993 , 142 ( 1 ): 325 - 336 .
SIM Y , KWON D , AN S , et al . Catalytic behavior of ABO 3 perovskites in the oxidative coupling of methane [J ] . Molecular Catalysis , 2020 , 489 : 110925 .
LIU R , ZHANG X H , LIU T , et al . Dynamic oxygen migration and reaction over ceria-supported nickel oxides in chemical looping partial oxidation of methane [J ] . Applied Catalysis B: Environmental and Energy , 2023 , 328 : 122478 .
LAI Y , WANG R , ZENG Y , et al . Low-temperature oxidation of methane on rutile TiO 2 (110): Identifying the role of surface oxygen s pecies [J ] . Journal of the American Chemical Society Au , 2024 , 4 ( 4 ): 1396 - 1404 .
ZHOU X H , PANG Y Q , LIU Z B , et al . Active oxygen center in oxidative coupling of methane on La 2 O 3 catalyst [J ] . Journal of Energy Chemistry , 2021 , 60 : 649 - 659 .
SEKINE Y , TANAKA K , MATSUKATA M , et al . Oxidative coupling of methane on Fe-doped La 2 O 3 catalyst [J ] . Energy & Fuels , 2009 , 23 ( 2 ): 613 - 616 .
XIONG J , YU H B , WEI Y C , et al . Metal ions (Li, Mg, Zn, Ce) doped into La 2 O 3 nanorod for boosting catalytic oxidative coupling of methane [J ] . Catalysts , 2022 , 12 ( 7 ): 713 .
LUO L F , JIN Y K , PAN H B , et al . Distribution and role of Li in Li-doped MgO catalysts for oxidative coupling of methane [J ] . Journal of Catalysis , 2017 , 346 : 57 - 61 .
RAOUF F , TAGHIZADEH M , YOUSEFI M . Activity enhancement of Li/MgO catalysts by lithium chloride as a lithium precursor for the oxidative coupling of methane [J ] . Reaction Kinetics, Mechanisms and Catalysis , 2013 , 110 ( 2 ): 373 - 385 .
NIEDERMAIER M , SCHWAB T , KUBE P , et al . Catalytic activity, water formation, and sintering: Methane activation over Co- and Fe-doped MgO nanocrystals [J ] . The Journal of Chemical Physics , 2020 , 152 ( 7 ): 074713 .
JONES A S , AZIZ D , ILSEMANN J , et al . Effects of low molar concentrations of low-valence dopants on samarium oxide xerogels in the oxidative coupling of methane [J ] . Catalysis Today , 2021 , 365 : 58 - 70 .
SUN N , ZHANG J Y , LING L X , et al . Performance and reaction mechanism of Mg-doped and Li-doped La 2 O 3 catalysts in oxidative coupling of methane: DFT and experiment study [J ] . Fuel , 2023 , 354 : 129398 .
CONG L N , ZHAO Y H , LI S G , et al . Sr-doping effects on La 2 O 3 catalyst for oxidative coupling of methane [J ] . Chinese Journal of Catalysis , 2017 , 38 ( 5 ): 899 - 907 .
LEI Y , CHU C Q , LI S G , et al . Methane activations by lanthanum oxide clusters [J ] . The Journal of Physical Chemistry C , 2014 , 118 ( 15 ): 7932 - 7945 .
WANG S B , LI S G , DIXON D A . Mechanism of selective and complete oxidation in La 2 O 3 -catalyzed oxidative coupling of methane [J ] . Catalysis Science & Technology , 2020 , 10 ( 8 ): 2602 - 2614 .
PALMER M S , NEUROCK M , OLKEN M M . Periodic density functional theory study of the dissociative adsorption of molecular oxygen over La 2 O 3 [J ] . The Journal of Physical Chemistry B , 2002 , 106 ( 25 ): 6543 - 6547 .
ZHANG R J , LIU G , HUO C B , et al . Tailoring catalytic and oxygen release capability in LaFe 1- x Ni x O 3 to intensify chemical looping reactions at medium temperatures [J ] . ACS Catalysis , 2024 , 14 : 7771 - 7787 .
DONG C , YANG C Y , REN Y W , et al , Local electron environment regulation of spinel CoMn 2 O 4 induced effective reactant adsorption and transformation of lattice oxygen for toluene oxidation [J ] . Environmental Science & Technology , 2023 , 57 ( 51 ): 21888 - 21897 .
LIU F , ZHAO J Y , XUAN G H , et al . Spatial evolution characteristics of active components of copper-iron based oxygen carrier in chemical looping combustion [J ] . Fuel , 2021 , 306 : 121650 .
YANG Y Y , CHAI Z G , QIN X T , et al . Light-induced redox looping of a rhodium/Ce x WO 3 photocatalyst for highly active and robust dry reforming of methane [J ] . Angewandte Chemie International Edition , 2022 , 61 ( 21 ): e202200567 .
PING L L , ZHANG Y , WANG B J , et al . Unraveling the surface state evolution of IrO 2 in ethane chemical looping oxidative dehydrogenation [J ] . ACS Catalysis , 2023 , 13 ( 2 ): 1381 - 1399 .
ZHANG J Y , SUN N , LING L X , et al . Effect of different valence metals doping on methane activation over La 2 O 3 (001) surface [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 5 ): 673 - 682 .
WANG S B , CONG L N , ZHAO C C , et al . First principles studies of CO 2 and O 2 chemisorption on La 2 O 3 surfaces [J ] . Physical Chemistry Chemical Physics , 2017 , 19 ( 39 ): 26799 - 26811 .
WEI C , FAN J L , GONG H R . Structural, thermodynamic, and mechanical properties of bulk La and A-La 2 O 3 [J ] . Journal of Alloys and Compounds , 2015 , 618 : 615 - 622 .
黎营涛 , 牛鹏宇 , 王强 , 等 . Zn-Al共掺杂La 2 O 3 催化剂在甲烷氧化偶联中的性能 [J ] . 燃料化学学报 , 2021 , 49 ( 10 ): 1458 - 1467 .
LI Y T , NIU P Y , WANG Q , et al . Performance of Zn-Al co-doped La 2 O 3 catalysts in the oxidative coupling of methane [J ] . Journal of Fuel Chemistry and Technology , 2021 , 49 ( 10 ): 1458 - 1467 .
DERK A R , LI B , SHARMA S , et al . Methane oxidation by lanthanum oxide doped with Cu, Zn, Mg, Fe, Nb, Ti, Zr, or Ta: The connection between the activation energy and the energy of oxygen-vacancy formation [J ] . Catalysis Letters , 2013 , 143 : 406 - 410 .
ARITANI H , YAMADA H , YAMAMTOTO T , et al . XANES study of Li-MgO and Li-La 2 O 3 -MgO catalysts for oxidative coupling of methane [J ] . Journal of Synchrotron Radiation , 2001 , 8 ( 2 ): 593 - 595 .
CHEN H T , XING Z F , SONG D , et al . Binary Li/Na tungstates modified Mg 6 MnO 8 as redox catalysts for enhanced performance of chemical looping oxidative dehydrogenation of ethane [J ] . Chemical Engineering Journal , 2024 , 2 : 150146 .
DELLEY B . An all-electron numerical method for solving the local density functional for polyatomic molecules [J ] . The Journal of Chemical Physics , 1990 , 92 ( 1 ): 508 - 517 .
DELLEY B . From molecules to solids with the DMol 3 approach [J ] . The Journal of Chemical Physics , 2000 , 113 ( 18 ): 7756 - 7764 .
TIAN D X , ZHANG H L , ZHAO J J . Structure and structural evolution of Ag n ( n = 3 - 22) clusters using a genetic algorithm and density functional theory method [J ] . Solid State Communications , 2007 , 144 ( 3/4 ): 174 - 179 .
PERDEW J P , BURKE K , ERNZERHOF M . Generalized gradient approximation made simple [J ] . Physical Review Letters , 1996 , 77 ( 18 ): 3865 - 3868 .
DOLG M , WEDIG U , STOLL H , et al . Energy-adjusted ab initio pseudopotentials for the first row transition elements [J ] . The Journal of Chemical Physics , 1987 , 86 ( 2 ): 866 - 872 .
HOHENBERG P , KOHN W . Inhomogeneous electron gas [J ] . Physical Review , 1964 , 136 ( 3B ): 864 - 871 .
HALGREN T A , LIPSCOMB W N . The synchronous-transit method for determining reaction pathways and locating molecular transition states [J ] . Chemical Physics Letters , 1977 , 49 ( 2 ): 225 - 232 .
GOVIND N , PETERSEN M , FITZGERALD G , et al . A generalized synchronous transit method for transition state location [J ] . Computational Materials Science , 2003 , 28 ( 2 ): 250 - 258 .
LIU Z B , LI J P H , VOVK E , et al . Online kinetics study of oxidative coupling of methane over La 2 O 3 for methane activation: What is behind the distinguished light-off temperatures? [J ] . ACS Catalysis , 2018 , 8 ( 12 ): 11761 - 11772 .
KUŚ S , OTREMBA M , TANIEWSKI M . The catalytic performance in oxidative coupling of methane and the surface basicity of La 2 O 3 , Nd 2 O 3 , ZrO 2 and Nb 2 O 5 [J ] . Fuel , 2003 , 82 ( 11 ): 1331 - 1338 .
NOON D , SEUBSAI A , SENKAN S . Oxidative coupling of methane by nanofiber catalysts [J ] . ChemCatChem , 2013 , 5 ( 1 ): 146 - 149 .
JIANG T , SONG J J , HUO M F , et al . La 2 O 3 catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane [J ] . RSC Advances , 2016 , 6 ( 41 ): 34872 - 34876 .
HUANG M , FABRIS S . Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations [J ] . Physical Review B , 2007 , 75 ( 8 ): 081404 .
ZHAO Y , TENG B T , WEN X D , et al . Superoxide and peroxide species on CeO 2 (111), and their oxidation roles [J ] . The Journal of Physical Chemistry C , 2012 , 116 ( 30 ): 15986 - 15991 .
SETVÍN M , ASCHAUER U , SCHEIBER P , et al . Reaction of O 2 with subsurface oxygen vacancies on TiO 2 anatase (101) [J ] . Science , 2013 , 341 : 988 - 991 .
SHI N , LIU Y , HAN B , et al . Elucidating the action mechanism of different kinds of oxygen species on methane dissociation to generate methyl radical on lanthanum oxide catalyst [J ] . Fuel , 2024 , 366 : 131263 .
SONG S , SONG H , LI L M , et al . A selective Au-ZnO/TiO 2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen [J ] . Nature Catalysis , 2021 , 4 ( 12 ): 1032 - 1042 .
LANG X F , LIANG Y H , SUN L L , et al . Interplay between methanol and anatase TiO 2 (101) surface: The effect of subsurface oxygen vacancy [J ] . The Journal of Physical Chemistry C , 2017 , 121 ( 11 ): 6072 - 6080 .
LEE H , LEE D H , HA J M , et al . Plasma assisted oxidative coupling of methane (OCM) over Ag/SiO 2 and subsequent regeneration at low temperature [J ] . Applied Catalysis A: General , 2018 , 557 : 39 - 45 .
LACOMBE S , ZANTHOFF H , MIRODATOS C . Oxidative coupling of methane over lanthana catalysts: II. A mechanistic study using isotope transient kinetics [J ] . Journal of Catalysis , 1995 , 155 ( 1 ): 106 - 116 .
张祺 , 牛鹏宇 , 贾丽涛 , 等 . 氧化镧催化甲烷氧化偶联反应的晶粒尺寸效应的研究 [J ] . 燃料化学学报 , 2023 , 51 ( 5 ): 644 - 655 .
ZHANG Q , NIU P Y , JIA L T , et al . Study of grain size effect of lanthanum oxide catalyzed methane oxidation coupling reaction [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 5 ): 644 - 655 .
LOUIS C , CHANG T L , KEMAREC M , et al . EPR study of the stability and the role of the O 2- species on La 2 O 3 in the oxidative coupling of methane [J ] . Catalysis Today , 1992 , 13 ( 2/3 ): 283 - 289 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构