浏览全部资源
扫码关注微信
1.常州大学 石油与天然气工程学院 油气与新能源储运技术江苏省高校重点实验室,江苏 常州 213164
2.中国石油安全环保技术研究院有限公司,北京 102206
穆祎(1999—),硕士研究生,研究方向为深海流动安全保障,E-mail:muyi1119@163.com。
柳扬(1993—),博士,副教授,研究方向为深海流动安全保障及水合物应用技术,E-mail:liu.y@cczu.edu.cn。
收稿日期:2024-05-10,
修回日期:2024-06-07,
纸质出版日期:2025-03-25
移动端阅览
穆祎,柳扬,吕晓方等.水合物阻聚剂作用机理与性能影响因素研究进展[J].低碳化学与化工,2025,50(03):135-147.
MU Yi,LIU Yang,LV Xiaofang,et al.Research progress on mechanism of action and performance influencing factors of hydrate anti-agglomerants[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):135-147.
穆祎,柳扬,吕晓方等.水合物阻聚剂作用机理与性能影响因素研究进展[J].低碳化学与化工,2025,50(03):135-147. DOI: 10.12434/j.issn.2097-2547.20240208.
MU Yi,LIU Yang,LV Xiaofang,et al.Research progress on mechanism of action and performance influencing factors of hydrate anti-agglomerants[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):135-147. DOI: 10.12434/j.issn.2097-2547.20240208.
由水合物生成及聚集引起的管道堵塞是深海油气流动保障面临的主要问题之一。水合物阻聚剂(AAs)可通过阻止水合物颗粒聚集从而防控水合物堵塞,具有使用剂量低、适应高过冷度(> 10 ℃)环境等优点,应用前景广阔。首先综述了不同类型的水合物阻聚剂,从分子尺度分析了阻聚剂在水合物表面的作用机理,以及阻聚剂构象对其性能的影响;然后总结了常用的阻聚剂评价设备及评价方法,并探讨了体系中液烃组成、含水率、蜡、沥青质,以及盐等其他物质对阻聚剂阻聚效果的影响;最后展望了水合物阻聚剂的未来发展。水合物阻聚剂在体系中的作用机制是复杂的,可根据不同体系选择适应性与阻聚效果更好的阻聚剂。本研究可为开发高效、绿色、经济的水合物阻聚剂提供参考。
Pipeline blockage caused by hydrate formation and aggregation is one of the major challenges in deep-sea oil and gas flow assurance. Hydrate anti-agglomerants (AAs) can prevent hydrate particle aggregation
thereby mitigating hydrate blockage. Anti-agglomerants have advantages such as low dosage requirements and suitability for high subcooling environments (> 10 ℃)
making them promising for future applications. First
the different types of hydrate anti-agglomerants were reviewed
and the mechanisms of action of the anti-agglomerants at the molecular level on hydrate surfaces were analyzed
and how the conformation of the anti-agglomerant influences its performance was discussed. Then
common evaluation equipment and methods for anti-agglomerants were summarized
and how factors such as the composition of liquid hydrocarbons
water cut
waxes
asphaltenes and salts affect the anti-agglomeration effect was explored. Finally
the future development of hydrate anti-agglomerants was prospected. The mechanism of action of anti-agglomerants in the systems is complex
and the anti-agglomerants with better adaptability and inhibition effect can be selected according to different systems. This study can provide a reference for the development of efficient
green and cost-effective hydrate anti-agglomerants.
刘佳 , 梁德青 , 李君慧 , 等 . 油水体系水合物浆液流动保障研究进展 [J ] . 化工进展 , 2023 , 42 ( 4 ): 1739 - 1759 .
LIU J , LIANG Q D , LI J H , et al . A review of flow assurance studies on hydrate slurry in oil-water system [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 4 ): 1739 - 1759 .
DONG S B , FIROOZABADI A . Hydrate anti-agglomeration and synergy effect in normal octane at varying water cuts and salt concentrations [J ] . Journal of Chemical Thermodynamics , 2018 , 117 : 214 - 222 .
宫敬 , 史博会 , 陈玉川 , 等 . 含天然气水合物的海底多相管输及其堵塞风险管控 [J ] . 天然气工业 , 2020 , 40 ( 12 ): 133 - 142 .
GONG J , SHI B H , CHEN Y C , et al . Submarine multiphase pipeline transport containing natural gas hydrate and its plugging risk prevention and control [J ] . Natural Gas Industry , 2020 , 40 ( 12 ): 133 - 142 .
陈玉川 , 史博会 , 李文庆 , 等 . 水合物动力学抑制剂的作用机理研究进展 [J ] . 化工进展 , 2018 , 37 ( 5 ): 1726 - 1743 .
CHEN Y C , SHI B H , LI W Q , et al . Progress of influence mechanism of kinetic hydrate inhibitors [J ] . Chemical Industry and Engineering Progress , 2018 , 37 ( 5 ): 1726 - 1743 .
邓金睿 , 郗军锋 , 陈莉 , 等 . 天然气集输管道水合物防治方法研究进展 [J ] . 石油工业技术监督 , 2023 , 39 ( 4 ): 1 - 6 .
DENG J R , XI J F , CHEN L , et al . Research progress on prevention methods of natural gas hydrate in gas gathering and transportation pipelines [J ] . Technology Supervision in Petroleum Industry , 2023 , 39 ( 4 ): 1 - 6 .
李鑫源 , 闵文鹏 , 刘亮 , 等 . 天然气水合物抑制剂研究进展 [J ] . 化学工程与装备 , 2022 , ( 2 ): 191 - 193 .
LI X Y , MIN W P , LIU L , et al . Research progress of gas hydrate inhibitors [J ] , Chemical Engineering & Equipment , 2022 , ( 2 ): 191 - 193 .
李鑫源 , 闵文鹏 , 卢旺 , 等 . 改性PVP天然气水合物动力学抑制剂的制备及性能评价 [J ] . 精细石油化工 , 2022 , 39 ( 5 ): 60 - 64 .
LI X Y , MIN W P , LU W , et al . Fabrication and performance evaluation of modified PVP natural gas hydrate inhibition [J ] . Speciality Petrochemicals , 2022 , 39 ( 5 ): 60 - 64 .
LV Y N , GUAN Y T , GUO S D , et al . Effects of combined sorbitan monolaurate anti-agglomerants on viscosity of water-in-oil emulsion and natural gas hydrate slurry [J ] . Engeries , 2017 , 10 ( 8 ): 1105 .
ZI M C , CHEN D Y , WANG J , et al . Kinetic and rheological study of methane hydrate formation in water-in-oil emulsion: Effects of emulsion composition and silica sands [J ] . Fuel , 2019 , 255 : 115708 .
王谨航 , 何勇 , 史伶俐 , 等 . 气体水合物阻聚剂研究进展 [J ] . 化工进展 , 2023 , 42 ( 9 ): 4587 - 4602 .
WANG J H , HE Y , SHI L L , et al . Progress of gas hydrate anti-agglomerants [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 9 ): 4587 - 4602 .
STRIOLO A , ANH P , WALSH M R . Molecular properties of interfaces relevant for clathrate hydrate agglomeration [J ] . Current Opinion in Chemical Engineering , 2019 , 25 : 57 - 66 .
KELLAND M A , SVARTAS T M , ANDERSEN L D . Gas hydrate anti-agglomerant properties of polypropoxylates and some other demulsifiers [J ] . Journal of Petroleum Science and Engineering , 2009 , 64 ( 1/2/3/4 ): 1 - 10 .
KELLAND M A , SVARTAAS T M , OVSTHUS J , et al . Studies on some alkylamide surfactant gas hydrate anti-agglomerants [J ] . Chemical Engineering Science , 2006 , 61 ( 13 ): 4290 - 4298 .
ZANOTA M L , DICHARRY C , GRACIAA A . Hydrate plug prevention by quaternary ammonium salts [J ] . Energy & Fuels , 2005 , 19 ( 2 ): 584 - 590 .
CHUA P C , KELLAND M A . Study of the gas hydrate anti-agglomerant performance of a series of n -alkyl-tri( n -butyl)ammonium bromides [J ] . Energy & Fuels , 2013 , 27 ( 3 ): 1285 - 1292 .
NING F L , GUO D D , DIN S U , et al . The kinetic effects of hydrate anti-agglomerants/surfactants [J ] . Fuel , 2022 , 318 : 123566 .
KELLAND M A . History of the development of low dosage hydrate inhibitors [J ] . Energy & Fuels , 2006 , 20 ( 3 ): 825 - 847 .
PERRIN A , MUSA O M , STEED J W . The chemistry of low dosage clathrate hydrate inhibitors [J ] . Chemical Society Reviews , 2013 , 42 ( 5 ): 1996 - 2015 .
HUO Z , FREER E , LAMAR M , et al . Hydrate plug prevention by anti-agglomeration [J ] . Chemical Engineering Science , 2001 , 56 ( 17 ): 4979 - 4991 .
WEISS J , MCCLEMENTS D J . Mass transport phenomena in oil-in-water emulsions containing surfactant micelles: Solubilization [J ] . Langmuir , 2000 , 16 ( 14 ): 5879 - 5883 .
BROWN E P , KOH C A . Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties [J ] . Physical Chemistry Chemical Physics , 2016 , 18 ( 1 ): 594 - 600 .
HOU G D , LIANG D Q , LI X S . Experimental study on hydrate anti-agglomeration in the presence of rhamnolipid [J ] . RSC Advances , 2018 , 8 ( 69 ): 39511 - 39519 .
KELLAND M A . Tetrahydrofuran hydrate crystal growth inhibition by bis- and tris-amine oxides [J ] . Chemical Engineering Science , 2013 , 98 : 1 - 6 .
SUN M W , WANG Y , FIROOZABADI A . Effectiveness of alcohol cosurfactants in hydrate antiagglomeration [J ] . Energy & Fuels , 2012 , 26 ( 9 ): 5626 - 5632 .
KHAN N , KUMAR A , JOHNS M L , et al . Experimental investigation to elucidate the hydrate anti-agglomerating characteristics of 2-butoxyethanol [J ] . Chemical Engineering Journal , 2023 , 471 : 144288 .
STORR M T , TAYLOR P C , MONFORT J P , et al . Kinetic inhibitor of hydrate crystallization [J ] . Journal of the American Chemical Society , 2004 , 126 ( 5 ): 1569 - 1576 .
KELLAND M A , SVARTAAS T M , OVSTHUS J , et al . Studies on some zwittenonic surfactant gas hydrate anti-agglomerants [J ] . Chemical Engineering Science , 2006 , 61 ( 12 ): 4048 - 4059 .
AMAN Z M , SLOAN E D , SUM A K , et al . Lowering of clathrate hydrate cohesive forces by surface active carboxylic acids [J ] . Energy & Fuels , 2012 , 26 ( 8 ): 5102 - 5108 .
董三宝 , 田茂琳 , 徐遥远 , 等 . 天然气水合物防聚剂研究进展 [J ] . 广东化工 , 2021 , 48 ( 10 ): 82 - 85 .
DONG S B , TIAN M L , XU Y Y , et al . Progress in the investigation of natural gas hydrate anti-agglomerants [J ] . Guangdong Chemical Industry , 2021 , 48 ( 10 ): 82 - 85 .
BUI T , SICARD F , MONTEIRO D , et al . Antiagglomerants affect gas hydrate growth [J ] . Journal of Physical Chemistry Letters , 2018 , 9 ( 12 ): 3491 - 3496 .
CHOUDHARY N , HANDE V R , ROY S , et al . Effect of sodium dodecyl sulfate surfactant on methane hydrate formation: A molecular dynamics study [J ] . Journal of Physical Chemistry B , 2018 , 122 ( 25 ): 6536 - 6542 .
DONG S B , LIU C W , HAN W W , et al . The effect of the hydrate antiagglomerant on hydrate crystallization at the oil-water interface [J ] . ACS Omega , 2020 , 5 ( 7 ): 3315 - 3321 .
LI X F , MENG Z L . Experimental study on the potential of polymeric drilling fluid additives as hydrate anti-agglomerants by using rocking cell [J ] . Frontiers in Energy Research , 2022 , 10 : 884578 .
CHUA P C , KELLAND M A . Study of the gas hydrate antiagglomerant performance of a series of mono- and bis-amine oxides: Bual antiagglomerant and kinetic hydrate inhibition behavior [J ] . Energy & Fuels , 2018 , 32 ( 2 ): 1674 - 1684 .
FARHADIAN A , VARFOLOMEEV M A , KUDBANOV A , et al . A new class of promising biodegradable kinetic/anti-agglomerant methane hydrate inhibitors based on castor oil [J ] . Chemical Engineering Science , 2019 , 206 : 507 - 517 .
FARHADIAN A , VARFOLOMEEV M A , KUDBANOV A , et al . Waterborne polymers as kinetic/anti-agglomerant methane hydrate and corrosion inhibitors: A new and promising strategy for flow assurance [J ] . Journal of Natural Gas Science and Engineering , 2020 , 77 : 103235 .
CHEN J , XU J F , ZHANG Z C , et al . Molecular insights into the effects of mass transfer ability of anti-agglomerant monolayers with different densities on the growth and wetting behavior of methane hydrate [J ] . Journal of Molecular Liquids , 2024 , 395 : 123855 .
MEHRABIAN H , WALSH M R , TROUT B L . In silico analysis of the effect of alkyl tail length on antiagglomerant adsorption to natural gas hydrates in brine [J ] . Journal of Physical Chemistry C , 2019 , 123 ( 28 ): 17239 - 17248 .
CHANDA J , BANDYOPADHYAY S . Molecular dynamics study of surfactant monolayers adsorbed at the oil/water and air/water interfaces [J ] . Journal of Physical Chemistry B , 2006 , 110 ( 46 ): 23482 - 23488 .
GIOVAMBATTISTA N , DEBENEDETTI P G , ROSSKY P J . Effect of surface polarity on water contact angle and interfacial hydration structure [J ] . Journal of Physical Chemistry B , 2007 , 111 ( 32 ): 9581 - 9587 .
NAULLAGE P M , BERTOLAZZO A A , MOLINERO V . How do surfactants control the agglomeration of clathrate hydrates? [J ] . ACS Central Science , 2019 , 5 ( 3 ): 428 - 439 .
MOHR S , PÉTUYA R , SARRIA J , et al . Assessing the effect of a liquid water layer on the adsorption of hydrate anti-agglomerants using molecular simulations [J ] . Journal of Chemical Physics , 2022 , 157 ( 9 ).
BERTOLAZZO A A , NAULLAGE P M , PETERS B , et al . The clathrate-water interface is oleophilic [J ] . Journal of Physical Chemistry Letters , 2018 , 9 ( 12 ): 3224 - 3231 .
BELLUCCI M A , WALSH M R , TROUT B L . Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates [J ] . Journal of Physical Chemistry C , 2018 , 122 ( 5 ): 2673 - 2683 .
HE Z J , NING F L , MI F Y , et al . Molecular dynamics study on the spontaneous adsorption of aromatic carboxylic acids to methane hydrate surfaces: Implications for hydrate antiagglomeration [J ] . Energy & Fuels , 2022 , 36 ( 7 ): 3628 - 3639 .
PHAN A , BUI T , ACOSTA E , et al . Molecular mechanisms responsible for hydrate anti-agglomerant performance [J ] . Physical Chemistry Chemical Physics , 2016 , 18 ( 36 ): 24859 - 24871 .
BUI T , PHAN A , MONTEIRO D , et al . Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management [J ] . Langmuir , 2017 , 33 ( 9 ): 2263 - 2274 .
MUNUSAMY E , LUFT C M , PEMBERTON J E , et al . Unraveling the differential aggregation of anionic and nonionic monorhamnolipids at air-water and oil-water interfaces: A classical molecular dynamics simulation study [J ] . Journal of Physical Chemistry B , 2018 , 122 ( 24 ): 6403 - 6416 .
MOHR S , HOEVELMANN F , WYLDE J , et al . Ranking the efficiency of gas hydrate anti-agglomerants through molecular dynamic simulations [J ] . Journal of Physical Chemistry B , 2021 , 125 ( 5 ): 1487 - 1502 .
SICARD F , STRIOLO A . Role of structural rigidity and collective behaviour in the molecular design of gas hydrate anti-agglomerants [J ] . Molecular Systems Design & Engineering , 2021 , 6 ( 9 ): 713 - 721 .
LUZ A M , BARBOSA G , MANSKE C , et al . Tween-80 on water/oil interface: Structure and interfacial tension by molecular dynamics simulations [J ] . Langmuir , 2023 , 39 ( 9 ): 3255 - 3265 .
柳扬 , 陈杰 , 李娜 , 等 . 含蜡及表面活性剂环戊烷水合物浆液生成及黏度特性 [J ] . 低碳化学与化工 , 2024 , 49 ( 4 ): 113 - 123 .
LIU Y , CHEN J , LI N , et al . Formation and viscosity characteristics of cyclopentane hydrate slurry with wax and surfactant [J ] . Low-Carbon Chemistry and Chemical Engineeing , 2024 , 49 ( 4 ): 113 - 123 .
张东旭 , 吕杨 , 刘成 , 等 . 油水体系水合物行为实验研究装置及其应用进展 [J ] . 油气储运 , 2023 , 42 ( 11 ): 1212 - 1227 .
ZHANG X D , LV Y , LIU C , et al . An experimental device for investigating hydrate behavior in oil-water systems and its practical applications [J ] . Oil & Gas Storage and Transportation , 2023 , 42 ( 11 ): 1212 - 1227 .
PHAN A , STAMATAKIS M , KOH C A , et al . Correlating antiagglomerant performance with gas hydrate cohesion [J ] . ACS Applied Materials & Interfaces , 2021 , 13 ( 33 ): 40002 - 40012 .
ZHOU S D , CHEN X K , HE C Y , et al . Experimental study on hydrate formation and flow characteristics with high water cuts [J ] . Energies , 2018 , 11 ( 10 ): 2610 .
DONG S B , LI M Z , FIROOZABADI A . Effect of salt and water cuts on hydrate anti-agglomeration in a gas condensate system at high pressure [J ] . Fuel , 2017 , 210 : 713 - 720 .
GAO S Q . Hydrate risk management at high watercuts with anti-agglomerant hydrate inhibitors [J ] . Energy & Fuels , 2009 , 23 ( 3/4 ): 2118 - 2121 .
LIU Y , LV X F , MA Q L , et al . Investigation on synergistic deposition of wax and hydrates in waxy water-in-oil (W/O) flow systems [J ] . Petroleum Science , 2022 , 19 ( 4 ): 1840 - 1852 .
LIAO Q Y , SHI B H , SONG S F , et al . Molecular insights into methane hydrate growth in the presence of wax molecules [J ] . Fuel , 2022 , 324 : 124743 .
LI Z , LIU B , GONG Y H , et al . Molecular dynamics simulation to explore the impact of wax crystal on the formation of methane hydrate [J ] . Journal of Molecular Liquids , 2022 , 350 : 118229 .
LIU J , LIN D C , LIANG D Q , et al . Effect of cocoamidopropyl betaine on CH 4 hydrate formation and agglomeration in waxy oil-water systems [J ] . Energy , 2023 , 270 : 126955 .
LIU Y , WU C X , LV X F , et al . Hydrate growth and agglomeration in the presence of wax and anti-agglomerant: A morphology study and cohesive force measurement [J ] . Fuel , 2023 , 342 : 127782 .
SONG G C , NING Y X , GUO P H , et al . Investigation on hydrate growth at the oil-water interface: In the presence of wax and surfactant [J ] . Langmuir , 2021 , 37 ( 22 ): 6838 - 6845 .
FENG Y , LI M , HAN Y Z , et al . Gas hydrate nucleation and growth in a micro-reactor: Effect of individual component separated from the crude oil in the South China Sea [J ] . Chemical Engineering Journal , 2023 , 459 : 141483 .
CHEN Z R , LI Y H , CHEN C , et al . Aggregation behavior of asphalt on the natural gas hydrate surface with different surfactant coverages [J ] . Journal of Physical Chemistry C , 2021 , 125 ( 30 ): 16378 - 16390 .
CHEN Z R , SUN J Y , WU P , et al . Cyclodextrin as a green anti-agglomerant agent in oil-water emulsion containing asphalt [J ] . Fuel , 2023 , 335 : 127041 .
NING Y X , YAO M H , LI Y X , et al . Integrated investigation on the nucleation and growing process of hydrate in W/O emulsion containing asphaltene [J ] . Chemical Engineering Journal , 2023 , 454 : 140389 .
ZYLYFTARI G , LEE J W , MORRIS J F . Salt effects on thermodynamic and rheological properties of hydrate forming emulsions [J ] . Chemical Engineering Science , 2013 , 95 : 148 - 160 .
JIMÉNEZ-ANGELES F , FIROOZABADI A . Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates [J ] . ACS Central Science , 2018 , 4 ( 7 ): 820 - 831 .
HU S J , KOH C A . CH 4 /C 2 H 6 gas hydrate interparticle interactions in the presence of anti-agglomerants and salinity [J ] . Fuel , 2020 , 269 : 117208 .
KELLAND M A , RØNNING K W . Effect of divalent cations and other ions on the tetrahydrofuran crystal inhibition of quaternary ammonium salts relevance to the efficiency of gas hydrate quaternary anti-agglomerants [J ] . ACS Omega , 2023 , 8 ( 27 ): 24495 - 24502 .
YORK J D , FIROOZABADI A . Alcohol cosurfactants in hydrate antiagglomeration [J ] . Journal of Physical Chemistry B , 2008 , 112 ( 34 ): 10455 - 10465 .
SUN M W , WANG Y , FIROOZABADI A . Effectiveness of alcohol cosurfactants in hydrate antiagglomeration [J ] . Energy & Fuels , 2012 , 26 ( 9 ): 5626 - 5632 .
YU Y S , XU C G , LI X S . Evaluation of CO 2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate [J ] . Journal of Industrial and Engineering Chemistry , 2018 , 59 : 64 - 69 .
JIAO L J , WAN R C , WANG Z L . Experimental investigation of CO 2 hydrate formation in silica nanoparticle system under static conditions [J ] . Journal of Crystal Growth , 2022 , 583 : 126539 .
MIN J , KANG D W , AHN Y H , et al . Recoverable magnetic nanoparticles as hydrate inhibitors [J ] . Chemical Engineering Journal , 2020 , 389 : 124461 .
YU C H , YUE C , SUN B J , et al . Effect of silica nanoparticles to Span 80 and cocamidopropyl dimethylamine in methane hydrate formation and agglomeration in water-oil system [J ] . Energy & Fuels , 2023 , 37 ( 20 ): 15490 - 15504 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构