浏览全部资源
扫码关注微信
中冶赛迪工程技术股份有限公司,重庆 401122
范学峰(1995—),博士,工程师,研究方向为钢铁企业碳捕集与利用,E-mail:fan_xuefeng@foxmail.com。
王 刚(1983—),博士,正高级工程师,研究方向为低碳冶金,E-mail:gang.b.wang@cisdi.com.cn。
纸质出版日期:2025-01-25,
收稿日期:2024-04-22,
修回日期:2024-06-04,
移动端阅览
范学峰, 何学坤, 赵运建, 等. 钢铁行业碳捕集、利用与封存技术应用研究进展[J]. 低碳化学与化工, 2025,50(1):132-142.
FAN XUEFENG, HE XUEKUN, ZHAO YUNJIAN, et al. Application research progress of carbon capture, utilization and storage technology in iron and steel industry. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 132-142.
范学峰, 何学坤, 赵运建, 等. 钢铁行业碳捕集、利用与封存技术应用研究进展[J]. 低碳化学与化工, 2025,50(1):132-142. DOI: 10.12434/j.issn.2097-2547.20240172.
FAN XUEFENG, HE XUEKUN, ZHAO YUNJIAN, et al. Application research progress of carbon capture, utilization and storage technology in iron and steel industry. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 132-142. DOI: 10.12434/j.issn.2097-2547.20240172.
碳捕集、利用与封存(CCUS)技术作为最直接有效的末端碳减排手段,是实现钢铁行业“双碳”目标的关键技术保障。尽管CCUS技术在石化和电力行业已有多个示范项目,但钢铁行业CCUS技术应用仍处于探索阶段。围绕CCUS技术原理、钢铁企业碳排放特征和钢铁行业CCUS技术应用3个方面进行了总结分析。阐述了CCUS工艺流程中碳捕集、碳运输以及碳利用与封存技术的原理,分析了钢铁企业碳排放源的特点及气体组成、工况和杂质含量特征。通过梳理目前国内外钢铁企业开展的CCUS工业化应用项目及试验,总结了钢铁行业CCUS技术的关键问题及发展趋势。在综述技术应用现状的基础上,结合钢铁企业碳排放源的特征,展望了钢铁行业CCUS项目推广应用需重点关注的技术方向,以期助力于钢铁行业CCUS技术的进一步发展。
Carbon capture
utilization and storage (CCUS) technology is the most straightforward and efficient end-of-pipe carbon reduction method. CCUS technology is essential to achieve “carbon peak and carbon neutrality” targets of iron and steel industry. Although CCUS technology has several demonstration projects in petrochemical and power industries
its application in the iron and steel industry is still nascent. CCUS technology principles
carbon emission characteristics of iron and steel enterprises and CCUS technology applications in the iron and steel industry were summarized and analyzed. The fundamentals of carbon capture
transport
utilization and storage technology in the CCUS process were outlined. The characteristics of carbon emission sources and the gas composition
conditions
and impurity content were analyzed. The key problems and development trends of CCUS technology in the iron and steel industry were summarized by analyzing the CCUS industrial application projects and tests conducted both domestically and abroad. Based on the overview of current state of CCUS technology applications and carbon emission source characteristics in iron and steel enterprises
the key technologies that should be prioritized for the promotion and implementation of CCUS projects in iron and steel industry were prospected
in order to further promote the development of CCUS technology in iron and steel industry.
钢铁行业CCUS碳排放源特征
iron and steel industryCCUScarbon emission source characteristics
IPCC. Special report on global warming of 1.5 ℃ [M]. Cambridge: Cambridge University Press, 2018.
LEI T Y, WANG D P, YU X, et al. Global iron and steel plant CO2 emissions and carbon-neutrality pathways [J]. Nature, 2023, 622(7983): 514-520.
张琦, 沈佳林, 许立松. 中国钢铁工业碳达峰及低碳转型路径[J]. 钢铁, 2021, 56(10): 152-163.
ZHANG Q, SHEN J L, XU L S. Carbon peak and low-carbon transition path of China’s iron and steel industry [J]. Iron and Steel, 2021, 56(10): 152-163.
International Energy Agency. Iron and steel technology roadmap [R]. Paris: International Energy Agency, 2020.
张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
ZHANG X, YANG X L, LU X, et al. Annual report of China carbon capture, utilization and storage (CCUS) (2023) [R]. Beijing: The Administration Center for China’s Agenda 21, Global CCS Institute,Tsinghua University, 2023.
窦立荣, 孙龙德, 吕伟峰, 等. 全球二氧化碳捕集、利用与封存产业发展趋势及中国面临的挑战与对策[J]. 石油勘探与开发, 2023, 50(5): 1083-1096.
DOU L R, SUN L D, LV W F, et al. Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China [J]. Petroleum Exploration and Development, 2023, 50(5): 1083-1096.
龚奂彰, 黄秀玉. 钢铁行业碳减排技术应用与展望[J]. 中国冶金, 2021, 31(9): 53-58.
GONG H Z, HUANG X Y. Application and prospect of carbon emission reduction technology in iron and steel industry [J]. China Metallurgy, 2021, 31(9): 53-58.
邢奕, 崔永康, 田京雷, 等. 钢铁行业低碳技术应用现状与展望[J]. 工程科学学报, 2022, 44(4): 801-811.
XING Y, CUI Y K, TIAN J L, et al. Application status and prospect of low carbon technology in iron and steel industry [J]. Chinese Journal of Engineering, 2022, 44(4): 801-811.
陆诗建, 贡玉萍, 刘玲, 等. 有机胺CO2吸收技术研究现状与发展方向[J]. 洁净煤技术, 2022, 28(9): 44-54.
LU S J, GONG Y P, LIU L, et al. Research status and future development direction of CO2 absorption technology for organic amine [J]. Clean Coal Technology, 2022, 28(9): 44-54.
涂智芳, 魏建文, 周小斌. 固-液相变二氧化碳吸收剂的研究进展[J]. 洁净煤技术, 2022, 9(28): 122-132.
TU Z F, WEI J W, ZHOU X B. Research progress on carbon dioxide capture using solid-liquid phase-change absorbents [J]. Clean Coal Technology, 2022, 9(28): 122-132.
袁标, 沈鹏. 离子液体捕集CO2的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(3): 1-7.
YUAN B, SHEN P. Research progress of CO2 capture by ionic liquids [J]. Natural Gas Chemical Industry, 2022, 47(3): 1-7.
朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66(22): 2861-2877.
ZHU X C, GE T S, WU J Y, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies [J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877.
王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101.
WANG Z, YUAN Y, SHENG M L, et al. Membrane technology for carbon capture—Research status and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101.
陈兵, 白世星. 二氧化碳输送与封存方式利弊分析[J]. 天然气化工—C1化学与化工, 2018, 43(2): 114-118.
CHEN B, BAI S X. Analysis of advantages and disadvantages of carbon dioxide transport and storage ways [J]. Natural Gas Chemical Industry, 2018, 43(2): 114-118.
陆诗建, 张娟娟, 杨菲, 等. CO2管道输送技术进展与未来发展浅析[J]. 南京大学学报(自然科学), 2022, 58(6): 944-952.
LU S J, ZHANG J J, YANG F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. Journal of Nanjing University (Natural Science), 2022, 58(6): 944-952.
陈兵, 肖红亮, 王香增. 气体杂质对管道输送CO2相态的影响[J]. 天然气化工—C1化学与化工, 2017, 42(6): 89-94.
CHEN B, XIAO H L, WANG X Z. Impact of gas impurities on CO2 phase state in pipeline transportation [J]. Natural Gas Chemical Industry, 2017, 42(6): 89-94.
陈思锭, 张哲, 王春燕, 等. 浅谈CCS/CCUS中CO2管道输送对气质的要求[J]. 油气与新能源, 2022, 34(2): 71-81.
CHEN S D, ZHANG Z, WANG C Y, et al. Quality requirements for CO2 streams entering a pipeline transportation system in CCS/CCUS projects [J]. Petroleum and New Energy, 2022, 34(2): 71-81.
谢元涛, 封孝信. 钢渣矿化固化二氧化碳研究现状及展望[J]. 金属矿山, 2023, (11): 45-54.
XIE Y T, FENG X X. Research status and prospect of steel slag mineralization for carbon dioxide capture and sequestration [J]. Metal Mine, 2023, (11): 45-54.
张琦, 沈佳林, 籍杨梅. 典型钢铁制造流程碳排放及碳中和实施路径[J]. 钢铁, 2023, 58(2): 173-187.
ZHANG Q, SHEN J L, JI Y M. Analysis of carbon emissions in typical iron- and steelmaking process and implementation path research of carbon neutrality [J]. Iron and Steel, 2023, 58(2): 173-187.
LANZERSTORFER C, PREITSCHOPF W, NEUHOLD R, et al. Emissions and removal of gaseous pollutants from the top-gas of a blast furnace [J]. ISIJ International, 2019, 59(3): 590-595.
郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势[J]. 钢铁研究学报, 2020, 32(7): 525-531.
GUO Y H. Current station and tendency of purification and upgrading of blast furnace gas [J]. Journal of Iron and Steel Research, 2020, 32(7): 525-531.
李翔, 王学谦, 李鹏飞, 等. 高炉煤气特征组分分析及其对脱硫过程的影响研究进展[J]. 化工进展, 2021, 40(12): 6629-6639.
LI X, WANG X Q, LI P F, et al. Progress on characteristic components analysis of blast furnace gas and its influence on desulfurization process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6629-6639.
钱峰, 侯洪宇, 王永, 等. 热风炉废气循环利用系统腐蚀成因及解决方案研究[C]//中国金属学会. 第十三届中国钢铁年会论文集. 北京: 冶金工业出版社, 2022: 1-5.
QIAN F, HOU H Y, WANG Y, et al. Study on corrosion causes and solutions of waste gas recycling system of hot blast furnace [C]//The Chinese Society for Metals. Proceedings of the 13th China iron and steel annual conference. Beijing: Metallurgical Industry Press, 2022: 1-5.
蒋学凯. 转炉高温烟气喷吹煤粉CO2催化转化研究[D]. 武汉: 武汉科技大学, 2017.
JIANG X K. Investigation of CO2 catalytic conversion with the pulverized coal injected into the high temperature gas of converter [D]. Wuhan: Wuhan University of Science and Technology, 2017.
岳雷. 钢铁企业燃气工程设计手册[M]. 北京: 冶金工业出版社, 2015.
YUE L. Iron and steel enterprise gas engineering design handbook [M]. Beijing: Metallurgical Industry Press, 2015.
PARISI D R, LABORDE M A. Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore [J]. Chemical Engineering Journal, 2004, 104(1): 35-43.
BECHARA R, HAMADEH H, MIRGUUX O, et al. Optimization of the iron ore direct reduction process through multiscale process modeling [J]. Materials, 2018, 11(7): 1094.
闫军. 二氧化碳脱除在氢基竖炉中的应用[J]. 河南冶金, 2023, 31(5): 32-35.
YAN J. Application of carbon dioxide removal in hydrogen-based shaft furnace [J]. Henan Metallurgy, 2023, 31(5): 32-35.
梁超松, 冯祖强, 文旭林, 等. 柳钢加热炉烟气余热资源与回收技术分析[J]. 广西节能, 2021, (4): 55-57.
LIANG C S, FENG Z Q, WEN X L, et al. Analysis of flue gas waste heat resources and recovery technology of heating furnace in Liugang [J]. Guangxi Energy Conservation, 2021, (4): 55-57.
王跃欣. 焦炉烟气资源化分析与实践[J]. 燃料与化工, 2022, 53(2): 52-54.
WANG Y X. Analysis and practice in utilization of coke oven flue gas [J]. Fuel & Chemical Processes, 2022, 53(2): 52-54.
龙红明, 丁龙, 赵贺喜, 等. 典型钢铁生产流程烟气中CO减排研究进展[J]. 钢铁, 2023, 58(8): 1-12.
LONG H M, DING L, ZHAO H X, et al. Research progress of CO removal in flue gas of typical steel production process [J]. Iron and Steel, 2023, 58(8): 1-12.
YANG Y, XU W Q, WANG Y, et al. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China [J]. Chemical Engineering Journal, 2022, 450: 138438.
李海英, 薛海瑞, 刘吉凯, 等. 钢铁工业CO2捕集技术分析[J]. 化学通报, 2024, 87(3): 325-330.
LI H Y, XUE H R, LIU J K, et al. Analysis on CO2 capture technology in the iron and steel industry [J]. Chemistry, 2024, 87(3): 325-330.
林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886.
LIN H Z, PEI A G, FANG M X. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886.
熊波, 陈健, 李克兵, 等. 工业排放气二氧化碳捕集与利用技术进展[J]. 低碳化学与化工, 2023, 48(1): 9-18.
XIONG B, CHEN J, LI K B, et al. Technical progress in carbon dioxide capture and utilization of industrial vent gas [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(1): 9-18.
SHEIKH F. Commercialization of Al Reyadah-world’s 1st carbon capture CCUS project from iron & steel industry for enhanced oil recovery CO2-EOR [C]//Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi: Society of Petroleum Engineers, 2021: SPE-207676-MS.
BASHIR A, ALI M, PATIL S, et al. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects [J]. Earth-Science Reviews, 2024, 249: 104672.
周翔, 白永强. 我国高炉炼铁碳生产率提升路径研究[J]. 金属世界, 2024, (1): 15-22.
ZHOU X, BAI Y Q. Study on path to improve carbon productivity of blast furnace ironmaking in china [J]. Metal World, 2024, (1): 15-22.
ONODA M, MATSUZAKI Y, CHOWDHURY F A, et al. Sustainable aspects of ultimate reduction of CO2 in the steelmaking process (COURSE50 Project). Part 2: CO2 capture [J]. Journal of Sustainable Metallurgy, 2016, 2(3): 209-215.
HAYASHI M, MIMURA T. Steel industries in Japan achieve most efficient energy cut-off chemical absorption process for carbon dioxide capture from blast furnace gas [J]. Energy Procedia, 2013, 37: 7134-7138.
SAIMA W H, MOGI Y, HARAOKA T. Development of PSA system for the recovery of carbon dioxide and carbon monoxide from blast furnace gas in steel works [J]. Energy Procedia, 2013, 37: 7152-7159.
SAIMA H, MOGI Y, HARAOKA T. Development of PSA technology for the separation of carbon dioxide from blast furnace gas [J]. JFE Technical Report, 2014, (19): 133-138.
KIM J Y, HAN K, AHN C K, et al. Operating cost for CO2 capture process using aqueous ammonia [J]. Energy Procedia, 2013, 37: 677-682.
DANLOY G, BERTHELEMOT A, GRANT M, et al. ULCOS-Pilot testing of the low-CO2 blast furnace process at the experimental BF in Luleå [J]. Revue de Métallurgie, 2009, 106(1): 1-8.
SALAIS C, STREICHER C, ALBARRACIN-ZAIDIZA D, et al. DMXTM demonstrator for CO2 capture: First results of experimental campaign [C]//Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi: Society of Petroleum Engineers, 2022: SPE-210973-MS.
LAU H C. The contribution of carbon capture and storage to the decarbonization of India’s steel industry [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(12): 4957-4969.
中钢公司. 2012企业社会责任报告书[R]. 台湾: 中钢公司, 2012.
China Steel. 2012 corporate sustainability report [R]. Taiwan: China Steel, 2012.
邹庆峰, 刘鹏南, 田果. 八钢欧冶炉冶金煤气CO2捕集技术应用[J]. 新疆钢铁, 2021, (2): 1-3.
ZOU Q F, LIU P N, TIAN G. Application of CO2 trapping technology for metallurgical gas in OY furnace of Bayi Steel [J]. Xinjiang Iron and Steel, 2021, (2): 1-3.
季书民. 八钢低碳冶金技术路径研究及实践探讨[J]. 新疆钢铁, 2022, (1): 5-11.
JI S M. Research and practice of low carbon metallurgy technology path in Bayi Steel [J]. Xinjiang Iron and Steel, 2022, (1): 5-11.
PORTER R T J, ABANADES J C, AMIEIRO A. The work and preliminary results of the C4U project on advanced carbon capture for steel industries integrated in CCUS clusters [C]//16th International Conference on Greenhouse Gas Control Technologies (GHGT-16). Rueil Malmaison: Club CO2, 2022: SSRN-4276718.
MANZOLINI G, GIUFFRIDA A, COBDEN P D, et al. Techno-economic assessment of SEWGS technology when applied to integrated steel-plant for CO2 emission mitigation [J]. International Journal of Greenhouse Gas Control, 2020, 94: 102935.
GENTILE G, BONALUMI D, PIETERSE J A Z, et al. Techno-economic assessment of the FReSMe technology for CO2 emissions mitigation and methanol production from steel plants [J]. Journal of CO2 Utilization, 2022, 56: 101852.
MUKHOPADHYAY A, OMETTO M. Energy saving and CO2 reduction in Energiron DRI production [C]//6th International Congress on the Science and Technology of Ironmaking-ICSTI, 42nd International Meeting on Ironmaking and 13th International Symposium on Iron Ore. Sao Paulo: Associação Brasileira de Metalurgia, Materiais e Mineração (ABM) , 2012: 302-312.
于樾, 王锋, 齐渊洪, 等. 氢基直接还原铁工艺技术及应用[J]. 钢铁研究学报, 2024, 36(3): 283-298.
YU Y, WANG F, QI Y H, et al. Technology and applications of hydrogen-based direct reduced iron process [J]. Journal of Iron and Steel Research, 2024, 36(3): 283-298.
毛艳丽, 曲余玲, 李博, 等. 钢厂烟气CO2捕捉技术的开发及其应用前景分析[J]. 钢铁, 2016, 51(8): 6-10.
MAO Y L, QU Y L, LI B, et al. Development and application potential analysis of carbon dioxide capture technology from flue gas in steel works [J]. Iron and Steel, 2016, 51(8): 6-10.
龚奂彰, 黄秀玉. 钢铁行业碳捕集技术的典型应用[J]. 低碳化学与化工, 2023, 48(5): 103-108.
GONG H Z, HUANG X Y. Typical application of carbon capture technology in steel industry [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 103-108.
李延奎, 江风, 田东方. 钢厂尾气创新利用技术[C]//钢铁研究总院. 钢铁流程绿色制造与创新技术交流会论文集. 北京: 钢铁研究总院, 2018.
LI Y K, JIANG F, TIAN D F. Innovative utilization technology of tail gas from steel plant [C]//Central Iron & Steel Research Institute. Symposium on green manufacturing and innovative technology exchange in iron and steel process. Beijing: Central Iron & Steel Research Institute, 2018.
吉立鹏, 张丙龙, 曾卫民. 基于石灰窑回收CO2用于炼钢的关键技术分析[J]. 中国冶金, 2019, 29(3): 49-52.
JI L P, ZHANG B L, ZENG W M. Analysis on key technologies of CO2 recovery from lime kiln for steelmaking [J]. China Metallurgy, 2019, 29(3): 49-52.
ZHU R, HAN B C, DONG K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1421-1429.
李晨晓, 张昀, 张凯璇, 等. 钢铁行业中CO2资源化利用的研究进展[J]. 材料导报, 2023, 37(S2): 468-473.
LI C X, ZHANG Y, ZHANG K X, et al. Research on resource utilization of CO2 in steel industry [J]. Materials Reports, 2023, 37(S2): 468-473.
邓浩华, 彭锋, 李晓. CO2在炼钢工艺中的资源化利用现状与展望[J]. 特殊钢, 2023, 44(5): 9-13.
DENG H H, PENG F, LI X. Current situation and prospects of resource application of CO2 in steelmaking process [J]. Special Steel, 2023, 44(5): 9-13.
于春强. 转炉底吹二氧化碳技术的应用[J]. 河北冶金, 2022, (10): 35-38.
YU C Q. Application of converter bottom blowing carbon dioxide technology [J]. Hebei Metallurgy, 2022, (10): 35-38.
刘清梅, 张福明. 钢铁工业减碳与CO2资源化利用技术的研究进展[J]. 钢铁, 2024, 59(2): 13-24.
LIU Q M, ZHANG F M. Research progress of carbon reduction and CO2 resource technology utilization in iron and steel industry [J]. Iron & Steel, 2024, 59(2): 13-24.
HAN K, AHN C K, LEE M S. Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry [J]. International Journal of Greenhouse Gas Control, 2014, 27: 239-246.
OLES M, LUKE W, KLEINSCHMIDT R, et al. Carbon2Chem®—A cross-industry approach to reduce greenhouse gas emissions [J]. ChemBioEng Reviews, 2018, 5(5): 285-293.
CENTI G, PERATHONER S. The chemical engineering aspects of CO2 capture, combined with its utilisation [J]. Current Opinion in Chemical Engineering, 2023, 39: 100879.
MACHAT M R, MARBACH J, SCHUMACHER H, et al. Turning CO/CO2-containing industrial process gas into valuable building blocks for the polyurethane industry [J]. Reaction Chemistry & Engineering, 2022, 7(3): 580-589.
王雪琦, 王改荣, 李鹏阳, 等. 钢铁行业CO2资源化利用技术应用现状及发展趋势[C]//中国金属学会.第十四届中国钢铁年会论文集——12.冶金环保与资源利用. 北京: 中国金属学会, 2023.
WANG X Q, WANG G R, LI P Y, et al. Application status and development trend of CO2 resource utilization technology in the steel industry [C]//The Chinese Society for Metals. The 14th CSM Steel Congress—12. Metallurgical environmental protection and resource utilization. Beijing: The Chinese Society for Metals, 2023.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构