浏览全部资源
扫码关注微信
1.太原理工大学 化学与化工学院,山西 太原 030024
2.上海电气集团国控环球工程有限公司,山西 太原 030000
刘鹏(1997—),硕士研究生,研究方向为C1化学与多相催化,E-mail:1040874688@qq.com。
武爱莲(1967—),博士,副教授,研究方向为C1化学与多相催化,E-mail:wuailian@tyut.edu.cn;
王俊文(1971—),博士,教授,博士研究生导师,研究方向为C1化学与多相催化,E-mail:wangjunwen@tyut.edu.cn。
纸质出版日期:2025-01-25,
收稿日期:2024-04-16,
修回日期:2024-05-14,
移动端阅览
刘鹏, 王晓斌, 丁传敏, 等. 活性炭负载双金属催化剂的乙醇气相羰基化反应性能研究[J]. 低碳化学与化工, 2025,50(1):47-53.
LIU PENG, WANG XIAOBIN, DING CHUANMIN, et al. Study on catalytic performances of activated carbon loaded bimetallic catalysts for ethanol gas phase carbonylation reaction. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 47-53.
刘鹏, 王晓斌, 丁传敏, 等. 活性炭负载双金属催化剂的乙醇气相羰基化反应性能研究[J]. 低碳化学与化工, 2025,50(1):47-53. DOI: 10.12434/j.issn.2097-2547.20240161.
LIU PENG, WANG XIAOBIN, DING CHUANMIN, et al. Study on catalytic performances of activated carbon loaded bimetallic catalysts for ethanol gas phase carbonylation reaction. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 47-53. DOI: 10.12434/j.issn.2097-2547.20240161.
乙醇气相羰基化法是一种非石油途径生产丙酸的方法,以活性炭为载体的Ni基催化剂广泛应用于该反应。为了提高该催化剂催化活性,在Ni基催化剂的基础上进一步分别掺杂铁、铜和铈元素,制备了一系列Ni-X(X = Fe、Cu或Ce)双金属催化剂,通过N
2
物理吸/脱附、XRD和XPS等探究了金属分散性与Ni
0
相对含量(
n
(Ni
0
)/
n
(Ni
0
+ Ni
2+
+ Ni
3+
))对反应性能的影响。在250 ℃、0.1 MPa和原料(
n
(CO):
n
(C
2
H
5
OH):
n
(C
2
H
5
I) = 40:20:1)体积空速为1.2 h
-1
条件下,对Ni-X双金属催化剂进行了乙醇气相羰基化反应催化性能评价。结果表明,在Ni-Ce双金属催化剂表面存在Ni物种与CeO
2
之间的协同作用,该协同作用促进Ni
2+
还原为Ni
0
,使催化剂表面出现更多活性位点,同时抑制了Ni金属表面堆积,促进了Ni金属分散。相比于Ni-Fe和Ni-Cu双金属催化剂,Ni-Ce双金属催化剂具有最高催化活性,反应6 h时该催化剂的乙醇转化率、丙酸与丙酸乙酯联合选择性以及丙酸与丙酸乙酯联合时空收率分别为70.9%、28.0%以及220.4 mg/(g·h)。
Ethanol gas phase carbonylation is a non-petroleum route for the production of propionic acid
and Ni-based catalysts supported on activated carbon are widely used in this reaction. In order to enhance the catalytic activity
a series of Ni-X (X = Fe
Cu or Ce) bimetallic catalysts were prepared by further doping Fe
Cu or Ce on the basis of Ni-based catalysts. The effects of metal dispersion and Ni
0
relative content
n
(Ni
0
)/
n
(Ni
0
+ Ni
2+
+ Ni
3+
) on the reaction performances were investigated by N
2
physical adsorption/desorption
XRD
XPS
etc. The activity of Ni-X bimetallic catalysts for ethanol gas phase carbonylation was evaluated under the conditions of 250 ℃
0.1 MPa and the feedstock (
n
(CO):
n
(C
2
H
5
OH):
n
(C
2
H
5
I) = 40:20:1) space velocity of 1.2 h
-1
. The results show that there exists a synergistic interaction between Ni species and CeO
2
on the surface of the Ni-Ce bimetallic catalyst
which promotes the reduction of Ni
2+
to Ni
0
and the appearance of more active sites on the catalyst surface
as well as inhibits the surface accumulation of Ni metal and promotes the dispersion of Ni metal. Compared with Ni-Fe and Ni-Cu bimetallic catalysts
the Ni-Ce bimetallic catalysts have the highest catalytic activity
and the ethanol conversion rate
combined selectivity of propionic acid and ethyl propionate and combined space-time yield of the catalyst at 6 h are 70.9%
28.0% and 220.4 mg/(g·h)
respectively.
双金属催化剂乙醇气相羰基化分散性活性位点活性炭
bimetallic catalystsethanolgas-phase carbonylationdispersibilityactive siteactivated carbon
GAO P F, WANG J W, ZHANG X F, et al. Influence of dispersion and stabilization of active metals on Ni-Cu/AC catalyst on gas phase carbonylation of ethanol [J]. Fuel, 2021, 292(15): 120308.
WANG Q C, WANG M Y, LI X H, et al. A Ni-Fe alloy supported by active carbon efficiently promotes the vapor phase catalytic carbonylation of ethanol [J]. New Journal of Chemistry, 2023, 47(29): 13938-13944.
PHAM C Q, ALSAIARI M, HIEU N H, et al. Efficient methane dry reforming process with low nickel loading for greenhouse gas mitigation [J]. Topics in Catalysis, 2024, 67: 748-760.
YU X B, WILLIAMS C T. Recent applications of nickel and nickel-based bimetallic catalysts for hydrodeoxygenation of biomass-derived oxygenates to fuels [J]. Catalysis Science & Technology, 2023, 13(3): 802-825.
KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane [J]. ChemSusChem, 2015, 8(21): 3556-3575.
彭峰, 黄仲涛. Ni-Zn/C催化剂上乙醇气相羰基化微反工艺评价工程与工艺[J]. 化学反应工程与工艺, 1996, 12(4): 79-83.
PENG F, HUANG Z T. Peaction techniques of vapor phase ethanol carbonylation on Ni-Zn/C catalyst [J]. Chemical Reaction Engineering and Technology, 1996, 12(4): 79-83.
关新新, 赵维君. 负载型乙醇羰基化催化剂的制备及活性研究[J]. 工业催化, 1999, (3): 23-25.
GUAN X X, ZHAO W J. Preparation and activity of supported Ni-Cu catalysts for carbonylation of ethanol [J]. Industrial Catalysis, 1999, (3): 23-25.
刘佩佩, 施晓峰, 李琳. 钴改性的镍催化甲烷二氧化碳重整反应研究[J]. 广州化工, 2018, 46(9): 27-29+50.
LIU P P, SHI X L, LI L. Study on carbon dioxide reforming of methane catalyzed by cobalt-modified nickel [J]. Guangzhou Chemical Industry, 2018, 46(9): 27-29+50.
李丽波, 魏树权, 徐国林. 第二金属组分对CO2甲烷化沉淀型镍基催化剂的影响[J]. 天然气化工—C1化学与化工, 2004, 29(1): 27-31.
LI L B, WEI S Q, XU G L. Influence of second metal on Ni-based catalysts prepared by co-preciptation method for methanation on of carbon dioxide [J]. Natural Gas Chemical Industry, 2004, 29(1): 27-31.
石磊, 马正飞, 方峻, 等. 甲醇常压气相羰基化合成乙酸的镍基双金属催化剂的研究[J]. 化学反应工程与工艺, 2002, 18(3): 206-211.
SHI L, MA Z F, FANG J, et al. Study on bimetallic supported catalysts used in atmospheric gas-phase carbonlyation of methanol to acetic acid [J]. Chemical Reaction Engineering and Technology, 2002, 18(3): 206-211.
SCHMIDT W. Calculation of XRD patterns of simulated FDU-15, CMK-5, and CMK-3 carbon structures [J].Microporous and Mesoporous Materials, 2009, 117(1/2):372-379.
BASKARAN I, SANKARA-NARAYANAN T S N, STEPHEN A. Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties [J]. Materials Letters, 2006, 60(16): 1990-1995.
ZHENG W Q, ZHANG J, GE Q J, et al. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen [J]. Applied Catalysis B: Environmental, 2008, 80(1/2): 98-105.
ORREGO-ROMERO A F, ARBELAEZ-PEREZ O F, BUSTAMANTE-LONDONO F, et al. Pelletization of catalysts supported on activated carbon. A case study: Clean synthesis of dimethyl carbonate from methanol and CO2 [J]. Revista Facultad de Ingeniería Universidad de Antioquia, 2015, (78): 38-47.
BAGUS P S, NELIN C J, BRUNDLE C R, et al. Combined multiplet theory and experiment for the Fe 2p and 3p XPS of FeO and Fe2O3 [J]. The Journal of Chemical Physics, 2021, 154(9): 94709.
BODENSTEIN-DRESLER L C W, KAMA A, FRISCH J, et al. Prospect of making XPS a high-throughput analytical method illustrated for a CuxNi1-xOy combinatorial material library [J]. RSC Advances, 2022, 12(13): 7996-8002.
MASEK K, VACLAVU M, BABOR P, et al. Sn-CeO2 thin films prepared by rf magnetron sputtering: XPS and SIMS study [J]. Applied Surface Science, 2009, 255(13/14): 6656-6660.
LIU Z S, YU F, PAN K K, et al. Two-dimensional vermiculite carried CuCoCe catalysts for CO-SCR in the presence of O2 and H2O: Experimental and DFT calculation [J]. Chemical Engineering Journal, 2021, 422: 130099.
COETSEE E, TERBLANS J J, SWART H C. XPS analysis for degraded Y2SiO5: Ce phosphor thin films [J]. Applied Surface Science, 2010, 256(22): 6641-6648.
GAMBU T G, ABRAHAMS R K, VAN STEEN E. Micro-kinetic modelling of CO-TPD from Fe(100)—Incorporating lateral interactions [J]. Catalysts, 2019, 9(4): 310.
PEI Y P, DING Y J, ZANG J, et al. Temperature-programmed desorption and surface reaction studies of CO on Co2C [J]. Chinese Journal of Catalysis, 2013, 34(8): 1570-1575.
LI W S, DONG H F. Effect of nano-Y2O3 on microstructure and mechanical properties of W-Ni-Cu alloys [J]. Materials Research Express, 2018, 5(10): 106503.
ZHAO S Z, KANG D J, LIU Y P, et al. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO2 nanorods with improved activity for carbonyl sulfide hydrolysis [J]. ACS Catalysis, 2020, 10(20): 11739-11750.
GAO S Q, LI Y A, GUO W Z, et al. Morphology effect of ceria support with hierarchical structure on the catalytic performance for nickel-based catalysts in dry reforming of methane [J]. Molecular Catalysis, 2022, 533: 112766.
JANTARANG S, LOVELL E C, TAN T H, et al. Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO2 [J]. Progress in Natural Science: Materials International, 2018, 28(2): 168-177.
WANG Y S, CHEN M Q, YANG J, et al. Hydrogen production from steam reforming of acetic acid over Ni-Fe/palygorskite modified with cerium [J]. Bioresources, 2017, 12(3): 4830-4853.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构