浏览全部资源
扫码关注微信
上海工程技术大学 机械与汽车工程学院,上海 201620
韩震晴(2001—),硕士研究生,研究方向为厨余垃圾热转化利用,E-mail:15055847023@163.com。
沈 骏(1986—),博士,副教授,研究方向为新型能源热化学转化利用,E-mail:ffcc1107@126.com。
纸质出版日期:2025-01-25,
收稿日期:2024-04-15,
修回日期:2024-05-11,
移动端阅览
韩震晴, 沈骏, 刘雪松, 等. 厨余垃圾热转化利用技术进展[J]. 低碳化学与化工, 2025,50(1):54-64.
HAN ZHENQING, SHEN JUN, LIU XUESONG, et al. Progress of thermal conversion and utilization technologies of kitchen waste. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 54-64.
韩震晴, 沈骏, 刘雪松, 等. 厨余垃圾热转化利用技术进展[J]. 低碳化学与化工, 2025,50(1):54-64. DOI: 10.12434/j.issn.2097-2547.20240158.
HAN ZHENQING, SHEN JUN, LIU XUESONG, et al. Progress of thermal conversion and utilization technologies of kitchen waste. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 54-64. DOI: 10.12434/j.issn.2097-2547.20240158.
为应对传统化石燃料储量减少、能源紧缺的问题,需进一步开发对可再生能源的利用方式。厨余垃圾作为居民生活中常见的有机固废,属于可再生能源范畴。由于厨余垃圾有机质含量高且易腐坏滋生细菌的特点,研究人员将更多关注点放在厨余垃圾的能源化利用方面。热转化技术由于具有周期短、效率高等特点非常适合作为厨余垃圾的能源化利用方式。常见热转化技术包括焚烧发电技术、水热液化技术、水热炭化技术、传统气化技术和超临界水气化技术。焚烧发电技术能够将厨余垃圾快速减量,实现有机废物向电能的转化利用;水热液化技术和水热炭化技术绿色环保,在制备高品质燃料方面具有显著优势,可分别实现厨余垃圾向生物原油、水热炭的高效转化;传统气化技术和超临界水气化技术能够将厨余垃圾向可燃合成气转化,技术较为成熟,尤其是超临界水气化技术在厨余垃圾制备清洁能源氢气方面具有较大优势。结合技术发展现状指出了各种热转化技术的局限性并提出了相关建议。对各种热转化技术的未来发展方向进行了展望,以为实现大规模厨余垃圾的能源化利用提供参考。
To address the shortages of traditional fossil fuel reserves and energy
it is necessary to further develop the utilization methods of renewable energy. Kitchen waste
as common organic solid waste in residential life
belongs to the category of renewable energy. Due to its high organic matter content and susceptibility to spoilage and bacterial growth
human have focused more on energy utilization of kitchen waste. Thermal conversion technologies are suitable as resource utilization methods for kitchen waste due to their short cycle and high efficiency
including incineration power generation technology
hydrothermal liquefaction technology
hydrothermal carbonization technology
traditional gasification technology and supercritical water gasification technology. Incineration power generation technology can quickly reduce kitchen waste and achieve the conversion and utilization of organic waste to generate power. Hydrothermal liquefaction technology and hydrothermal carbonization technology are environmentally friendly and have significant advantages in preparing high-quality fuels
respectively achieving efficient conversion of kitchen waste to bio oil and hydrothermal carbon. Traditional gasification technology and supercritical water gasification technology can convert kitchen waste to combustible synthesis gas
and they are relatively mature. Especially
supercritical water gasification technology has great advantages in the preparation of clean energy hydrogen from kitchen waste. Combined with the current status of technological development
the limitations of various thermal conversion technologies were pointed out and relevant suggestions were put forward. The future development directions of various technologies were discussed
to provide references for achieving energy utilization of large-scale kitchen waste.
厨余垃圾热转化技术焚烧发电水热液化水热炭化气化技术
kitchen wastethermal conversion technologiesincineration power generationhydrothermal liquefactionhydrothermal carbonizationgasification technologies
SU G, ONG H C, FATTAH I M R, et al. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges [J]. Science of the Total Environment, 2022, 809: 151170.
WANG Y, ZANG B, LI G X, et al. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation [J]. Waste Management, 2016, 53: 62-67.
MENG Q C, LIU H B, ZHANG H D, et al. Anaerobic digestion and recycling of kitchen waste: A review [J]. Environmental Chemistry Letters, 2022, 20(3): 1745-1762.
NEGRI C, RICCI M, ZILIO M, et al. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review [J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110138.
YU Q, YANG Y F, WANG M W, et al. Enhancing anaerobic digestion of kitchen wastes via combining ethanol-type fermentation with magnetite: Potential for stimulating secretion of extracellular polymeric substances [J]. Waste Management, 2021, 127: 10-17.
AJAY C M, MOHAN S, DINESHA P. Decentralized energy from portable biogas digesters using domestic kitchen waste: A review [J]. Waste Management, 2021, 125: 10-26.
LAWRANCE A, GOLLAPALLI S M V, SAVITHRI S, et al. Modelling and simulation of food waste bio-drying [J]. Chemosphere, 2022, 294: 133711.
CERDA A, ARTOLA A, FONT X, et al. Composting of food wastes: Status and challenges [J]. Bioresource Technology, 2018, 248: 57-67.
SEO M W, LEE S H, NAM H, et al. Recent advances of thermochemical conversion processes for biorefinery [J]. Bioresource Technology, 2022, 343: 126109.
ZHUANG J B, TANG J, ALJERF L. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate [J]. Fuel, 2022, 320: 123826.
ZHOU X, ZHOU P, ZHAO X Q, et al. Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery [J]. Energy, 2021, 224: 120157.
TANG Y J, DONG J, CHI Y, et al. Energy and exergy optimization of food waste pretreatment and incineration [J]. Environmental Science and Pollution Research, 2017, 24(22): 18434-18443.
LI R, GONG M H, BINEY B W, et al. Three-stage pretreatment of food waste to improve fuel characteristics and incineration performance with recovery of process by-products [J]. Fuel, 2022, 330: 125655.
刘雪松, 沈骏, 刘雪莲. 厨余垃圾资源化利用技术研究进展[J]. 现代化工, 2023, 43(4): 23-26+31.
LIU X S, SHEN J, LIU X L. Research progress on kitchen wastes utilization technology [J]. Modern Chemical Industry, 2023, 43(4): 23-26+31.
范厚强. 浅析我国垃圾焚烧发电行业发展趋势[J]. 广东化工, 2024, 51(4): 95-97.
FAN H Q. Analysis of the development trend of waste incineration power generation industry in our country [J]. Guangdong Chemical Industry, 2024, 51(4): 95-97.
金晶, 吴梅花, 张梓婧, 等. 厨余垃圾资源化及碳排放分析——以乌鲁木齐市为例[J]. 中国资源综合利用, 2023, 41(1): 73-78.
JIN J, WU M H, ZHANG Z J, et al. Analysis on kitchen waste recycling and carbon emission—Taking Urumqi city as an example [J]. China Resources Comprehensive Utilization, 2023, 41(1): 73-78.
KARAGÖZ S, BHASKAR T, MUTO A, et al. Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution [J]. Bioresource Technology, 2006, 97(1): 90-98.
屈埴, 刘志丹, 朱张兵, 等. 厨余垃圾水热液化成油特性研究[J]. 太阳能学报, 2016, 37(5): 1327-1333.
QU Z, LIU Z D, ZHU Z B, et al. Bio-crude production from kitchen waste through hydrothermal liquefaction [J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1327-1333.
WANG L X, CHI Y, SHU D, et al. Experimental studies of hydrothermal liquefaction of kitchen waste with H+, OH- and Fe3+ additives for bio-oil upgrading [J]. Waste Management & Research, 2021, 39(1): 165-173.
LI R D, LI B S, YANG T H, et al. Liquefaction of rice stalk in sub- and supercritical ethanol [J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1459-1465.
WANG Y, WANG H, LIN H F, et al. Effects of solvents and catalysts in liquefaction of pinewood sawdust for the production of bio-oils [J]. Biomass and Bioenergy, 2013, 59: 158-167.
CHEN Y, WU Y L, ZHANG P L, et al. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water [J]. Bioresource Technology, 2012, 124: 190-198.
YAN M, LIU Y, WEN X Q, et al. Effect of operating conditions on hydrothermal liquefaction of kitchen waste with ethanol-water as a co-solvent for bio-oil production [J]. Renewable Energy, 2023, 215: 118949.
CHEN W H, LIN Y Y, LIU H C, et al. A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application [J]. Applied Energy, 2019, 237: 283-291.
MOTAVAF B, SAVAGE P E. Effect of process variables on food waste valorization via hydrothermal liquefaction [J]. ACS ES&T Engineering, 2021, 1(3): 363-374.
WATSON J, LU J W, DE-SOUZA R, et al. Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency [J]. Energy, 2019, 167: 189-197.
申瑞霞, 赵立欣, 冯晶, 等. 生物质水热液化产物特性与利用研究进展[J]. 农业工程学报, 2020, 36(2): 266-274.
SHEN R X, ZHAO L X, FENG J, et al. Research progress on characteristics and utilization of products from hydrothermal liquefaction of biomass [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 266-274.
DÉNIEL M, HAARLEMMER G, ROUBAUD A, et al. Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1632-1652.
刘祚希, 魏莹莹, 王建, 等. 我国30省份秸秆水热液化技术的碳减排潜力分析[J]. 洁净煤技术, 2024, 30(3): 96-105.
LIU Z X, WEI Y Y, WANG J, et al. Analysis of the carbon emission reduction potential of straw hydrothermal liquefaction technology in 30 provinces of China [J]. Clean Coal Technology, 2024, 30(3): 96-105.
XU X W, TU R, SUN Y, et al. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk [J]. Bioresource Technology, 2019, 271: 427-438.
PAVKOV I, RADOJCIN M, STAMENKOVIC Z, et al. Hydrothermal carbonization of agricultural biomass: Characterization of hydrochar for energy production [J]. Solid Fuel Chemistry, 2022, 56(3): 225-235.
PATEL B, GUO M, LZADPANAH A, et al. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing [J]. Bioresource Technology, 2016, 199: 288-299.
许劲, 徐军, 吕秋颖, 等. 水热碳化技术用于污泥处理处置前景分析[J]. 中国给水排水, 2020, 36(16): 54-59.
XU J, XU J, LV Q Y, et al. Perspectives on hydrothermal carbonization technology for municipal sludge treatment and disposal [J]. China Water & Wastewater, 2020, 36(16): 54-59.
HE C, ZHANG Z, GE C F, et al. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior [J]. Waste Management, 2019, 100: 171-181.
KÖRNER P. Hydrothermal degradation of amino acids [J]. ChemSusChem, 2021, 14(22): 4947-4957.
LENG L J, YANG L H, LENG S Q, et al. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen [J]. Science of the Total Environment, 2021, 756: 143679.
WU S, WANG Q, FANG M H, et al. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects [J]. Science of the Total Environment, 2023: 165327.
SHI Y, LI C L, CHAI R Z, et al. Effect of different hydrothermal parameters on calorific value and pyrolysis characteristics of hydrochar of kitchen waste [J]. Energies, 2023, 16(8): 3561.
赵坤. 餐厨垃圾水热碳化工艺及产物性质研究[D]. 北京: 中国石油大学, 2019.
ZHAO K. The research of hydrothermal carbonization technology of food waste and product properties [D]. Beijing: China University of Petroleum, 2019.
NIZAMUDDIN S, BALOCH H A, GRIFFIN G J, et al. An overview of effect of process parameters on hydrothermal carbonization of biomass [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1289-1299.
范准. 反应条件对污泥水热碳化产物的影响分析[D]. 重庆: 重庆大学, 2020.
FAN Z. Effect of reaction conditions on the products of sludge hydrothermal carbonization [D]. Chongqing: Chongqing University, 2020.
岳芬. 糠醛渣水热碳化: 工艺优化、生物炭及液相组分研究[D]. 上海: 上海大学, 2017.
YUE F. Valorization of furfural residue by hydrothermal carbonization: Process optimization, biochar and process water characterization [D]. Shanghai: Shanghai University, 2017.
LUCIAN M, VOLPE M, GAO L H, et al. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste [J]. Fuel, 2018, 233: 257-268.
LU X W, FLORA J R V, BERGE N D. Influence of process water quality on hydrothermal carbonization of cellulose [J]. Bioresource Technology, 2014, 154: 229-239.
YANG W, SHIMANOUCHI T, KIMURA Y. Characterization of the residue and liquid products produced from husks of nuts from carya cathayensis sarg by hydrothermal carbonization [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 591-598.
MALGHANI S, JÜSCHKE E, BAUMERT J, et al. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study [J]. Biology and Fertility of Soils, 2015, 51(1): 123-134.
BARGMANN I, RILLIG M C, KRUSE A, et al. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 48-58.
LU X W, JORDAN B, BERGE N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques [J]. Waste Management, 2012, 32(7): 1353-1365.
STOBERNACK N, MAYER F, MALEK C, et al. Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: Modeling of the entire process chain [J]. Bioresource Technology, 2020, 318: 124038.
GOEL C, MOHAN S, DINESHA P, et al. CO2 adsorption by KOH-activated hydrochar derived from banana peel waste [J]. Chemical Papers, 2024, 78: 3845-3856.
REHMAN A, PARK S J. From chitosan to urea-modified carbons: Tailoring the ultra-microporosity for enhanced CO2 adsorption [J]. Carbon, 2020, 159: 625-637.
ZHOU Y, ENGLER N, NELLES M. Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China [J]. Bioresource Technology, 2018, 260: 404-412.
PANG S S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals [J]. Biotechnology Advances, 2019, 37(4): 589-597.
PUIG-ARNAVAT M, BRUNO J C, CORONAS A. Review and analysis of biomass gasification models [J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2841-2851.
LOKARE N, SAHU P, VAIRAKANNU P. CO2-based spouted fluidized bed gasification of kitchen waste: Experimental investigation with process modelling [J]. Canadian Journal of Chemical Engineering, 2024, 102(9): 3039-3051.
NIU M M, HUANG Y J, JIN B S, et al. Oxygen gasification of municipal solid waste in a fixed-bed gasifier [J]. Chinese Journal of Chemical Engineering, 2014, 22(9): 1021-1026.
PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—A review [J]. Renewable Energy, 2014, 66: 570-579.
SINGH D, YADAV S, BHARADWAJ N, et al. Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: Influence of steam flow rate and temperature [J]. International Journal of Hydrogen Energy, 2020, 45(41): 20843-20850.
XIONG S S, HE J, YANG Z Q, et al. Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture [J]. Energy, 2020, 194: 116831.
ZHENG X Y, YING Z, WANG B, et al. Hydrogen and syngas production from municipal solid waste (MSW) gasification via reusing CO2 [J]. Applied Thermal Engineering, 2018, 144: 242-247.
MAUERHOFER A M, FUCHS J, MÜLLER S, et al. CO2 gasification in a dual fluidized bed reactor system: Impact on the product gas composition [J]. Fuel, 2019, 253: 1605-1616.
HEIDENREICH S, FOSCOLO P U. New concepts in biomass gasification [J]. Progress in Energy and Combustion Science, 2015, 46: 72-95.
NAVEED S, RAMZAN N, MALIK A, et al. A comparative study of gasification of food waste (FW), poultry waste (PW), municipal solid waste (MSW) and used tires (UT) [J]. The Nucleus, 2020, 46(3): 77-81.
王子奇, 沈骏, 刘雪松. 有机固体废弃物热化学转化技术研究进展[J]. 现代化工, 2023, 43(S2): 62-65+71.
WANG Z Q, SHEN J, LIU X S. Research progress on thermochemical conversion technology for organic solid wastes [J]. Modern Chemical Industry, 2023, 43(S2): 62-65+71.
GUO Y, WANG S Z, XU D H, et al. Review of catalytic supercritical water gasification for hydrogen production from biomass [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 334-343.
WANG Q, ZHANG X, CUI D, et al. Advances in supercritical water gasification of lignocellulosic biomass for hydrogen production [J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105934.
CAO C Q, GUO L J, JIN H, et al. System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production [J]. Energy, 2017, 132: 238-247.
NANDA S, ISEN J, DALAI A K, et al. Gasification of fruit wastes and agro-food residues in supercritical water [J]. Energy Conversion and Management, 2016, 110: 296-306.
NANDA S, REDDY S N, HUNTER H N, et al. Supercritical water gasification of fructose as a model compound for waste fruits and vegetables [J]. The Journal of Supercritical Fluids, 2015, 104: 112-121.
SU W, CAI C Q, LIU P, et al. Supercritical water gasification of food waste: Effect of parameters on hydrogen production [J]. International Journal of Hydrogen Energy, 2020, 45(29): 14744-14755.
ORTIZ F J G, CAMPANARIO F J, AGUILERA P G, et al. Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3-SiO2 catalyst [J]. Energy, 2015, 84: 634-642.
DEMIREL E, ERKEY C, AYAS N. Supercritical water gasification of fruit pulp for hydrogen production: Effect of reaction parameters [J]. The Journal of Supercritical Fluids, 2021, 177: 105329.
CHEN J W, FAN Y, ZHAO X H, et al. Experimental investigation on gasification characteristic of food waste using supercritical water for combustible gas production: Exploring the way to complete gasification [J]. Fuel, 2020, 263: 116735.
YAN M, SU H C, HANTOKO D, et al. Experimental study on the energy conversion of food waste via supercritical water gasification: Improvement of hydrogen production [J]. International Journal of Hydrogen Energy, 2019, 44(10): 4664-4673.
JIN H, LU Y J, GUO L J, et al. Hydrogen production by supercritical water gasification of biomass with homogeneous and heterogeneous catalyst [J]. Advances in Condensed Matter Physics, 2014, 2014: 1-9.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构