

浏览全部资源
扫码关注微信
西南化工研究设计院有限公司 多孔材料与分离转化全国重点实验室,国家碳一化学工程技术研究中心, 四川 成都 610225
Received:11 April 2025,
Revised:2025-06-04,
Published Online:28 October 2025,
移动端阅览
杜佳奇,李文龙,王佳杰等.草酸二甲酯加氢过程中Cu/SiO2催化剂失活机制研究[J].低碳化学与化工,
DU Jiaqi,LI Wenlong,WANG Jiajie,et al.Study on deactivation mechanism of Cu/SiO2 catalyst in hydrogenation of dimethyl oxalate[J].Low-Carbon Chemistry and Chemical Engineering,
杜佳奇,李文龙,王佳杰等.草酸二甲酯加氢过程中Cu/SiO2催化剂失活机制研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250177.
DU Jiaqi,LI Wenlong,WANG Jiajie,et al.Study on deactivation mechanism of Cu/SiO2 catalyst in hydrogenation of dimethyl oxalate[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250177.
草酸二甲酯加氢制乙二醇是煤炭高效清洁利用的代表性技术路线,在“碳中和”背景下受到了广泛关注。尽管该路线已实现工业化,但在目前的工业装置中仍存在催化剂易失活的问题。为研究催化剂失活机制,选取Cu/SiO
2
催化剂为模型催化剂,通过稳定性评价测试,结合XRD、TEM、N
2
吸/脱附、TGA及XPS等表征方法,分析了煅烧、还原和失活Cu/SiO
2
催化剂催化性能和结构的变化。结果表明,导致Cu/SiO
2
催化剂失活的主要原因是Cu颗粒团聚、积炭及活性组分Cu的价态变化。其中,Cu颗粒团聚会导致暴露催化剂表面的活性位点数量减小,催化活性降低;中间产物发生一系列副反应产生的积炭会覆盖催化剂的部分活性位点,导致催化活性降低;反应过程中Cu的价态变化会导致Cu
+
和Cu
0
在催化加氢过程中的协同作用被破坏,导致催化剂失活。
Hydrogenation of dimethyl oxalate to ethylene glycol is a representative technological pathway for the efficient and clean utilization of coal
which has garnered widespread attention in the background of “carbon neutrality”. Although the route has been industrialized
current industrial setups still face the issue of catalyst deactivation. To investigate the mechanism of catalyst deactivation
Cu/SiO
2
catalyst was selected as the model catalyst. Through stability evaluation tests
combined with characterization methods such as XRD
TEM
N
2
adsorption/desorption
TGA and XPS
changes in the catalytic performances and structures of calcined
reduced and deactivated Cu/SiO
2
catalysts were analyzed. The results indicate that the main causes of Cu/SiO
2
catalyst deactivation are the agglomeration of Cu particles
carbon deposition
and changes of valence state of active component Cu. Among them
the agglomeration of Cu particles can reduce the numbers of active sites exposed on the catalyst surface
leading to a decline in catalytic activity. Carbon deposition
generated through a series of side reactions of intermediate products
can cover partial active sites on the catalyst
also resulting in decreasing of catalytic activity. Changes of valence state of Cu during the reaction can disrupt the synergistic effect between Cu
+
and Cu
0
in the catalytic hydrogenation process
leading to catalyst deactivation.
SUN Y L , CHEN J S , QIN Y Y , et al . Rhodium-based bidentate phosphorus ligand catalyst for direct synthesis of ethylene glycol [J ] . Molecular Catalysis , 2022 , 524 : 112288 .
WIESFELD J J , PERŠOLJA P , ROLLIER F A , et al . Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts [J ] . Molecular Catalysis , 2019 , 473 : 110400 .
YU X B , BURKHOLDER M , KARAKALOS S G , et al . Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts [J ] . Catalysis Science & Technology , 2021 , 11 ( 7 ): 2403 - 2413 .
靳刘艳 , 赵江涛 , 张雨 , 等 . 焙烧温度对MOF衍生Cu@C催化剂催化草酸二甲酯加氢制乙二醇性能的影响 [J ] . 低碳化学与化工 , 2025 , 50 ( 3 ): 30 - 38 .
JIN L Y , ZHAO J T , ZHANG Y , et al . Effects of calcination temperatures on performances of MOF-derived Cu@C catalysts for catalytic hydrogenation of dimethyl oxalate to ethylene glycol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 3 ): 30 - 38 .
HAN L P , ZHANG L , ZHAO G F , et al . Copper-fiber-structured Pd-Au-CuO x : Preparation and catalytic performance in the vapor‐phase hydrogenation of dimethyl oxalate to ethylene glycol [J ] . ChemCatChem , 2016 , 8 ( 6 ): 1065 - 1073 .
KONG X P , YOU X M , YUAN P H , et al . Influence of dopants on the structure and catalytic features of the Cu/ZnO catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 6 ): 794 - 803 .
YU X B , VEST T A , GLEASON-BOURE N , et al . Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO 2 [J ] . Journal of Catalysis , 2019 , 380 : 289 - 296 .
SAN X G , GONG X H , LU Y M , et al . Anchoring Cu species over SiO 2 for hydrogenation of dimethyl oxalate to ethylene glycol [J ] . Catalysts , 2022 , 12 ( 11 ): 1326 .
AI P P , JIN H Q , LI J , et al . Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J ] . Chinese Journal of Chemical Engineering , 2023 , 60 : 186 - 193 .
DATYE A K , XU Q , KHARAS K C , et al . Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism? [J ] . Catalysis Today , 2006 , 111 ( 1 ): 59 - 67 .
ZHAO S , YUE H R , ZHAO Y J , et al . Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO 2 : Enhanced stability with boron dopant [J ] . Journal of Catalysis , 2013 , 297 : 142 - 150 .
OUYANG R H , LIU J X , LI W X . Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions [J ] . Journal of the American Chemical Society , 2013 , 135 ( 5 ): 1760 - 1771 .
LIN J D , ZHAO X Q , CUI Y H , et al . Effect of feedstock solvent on the stability of Cu/SiO 2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol [J ] . Chemical Communications , 2012 , 48 ( 8 ): 1177 - 1179 .
ZHENG J W , ZHOU J F , LIN H Q , et al . CO-mediated deactivation mechanism of SiO 2 -supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol [J ] . The Journal of Physical Chemistry C , 2015 , 119 ( 24 ): 13758 - 13766 .
WEN C , CUI Y Y , DAI W L , et al . Solvent feedstock effect: The insights into the deactivation mechanism of Cu/SiO 2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol [J ] . Chemical Communications , 2013 , 49 ( 45 ): 5195 - 5197 .
ZHAO Y J , KONG L X , XU Y X , et al . Deactivation mechanism of Cu/SiO 2 catalysts in the synthesis of ethylene glycol via methyl glycolate hydrogenation [J ] . Industrial & Engineering Chemistry Research , 2020 , 59 ( 27 ): 12381 - 12388 .
GONG Z X , WANG H , LAN T , et al . Dehydrogenation of methyl glycolate to methyl glyoxylate over a Cu/SiO 2 catalyst [J ] . Applied Catalysis A: General , 2025 : 120219 .
LI H B , ZHANG Y F , JI D Y , et al . Carbon nanotube and copper phyllosilicate hierarchically integrated catalyst for the efficient hydrogenation of ethylene carbonate to methanol and ethylene glycol [J ] . Fuel , 2024 , 375 : 132555 .
YANG D L , LIN L , GUO R , et al . Bimetallic Cu-Ag/SiO 2 catalysts with tunable product selectivity and enhanced low-temperature stability in the dimethyl oxalate hydrogenation [J ] . Molecular Catalysis , 2022 , 528 : 112508 .
王征 , 武朦朦 , 宋有为 , 等 . 焙烧温度对Cu/SiO 2 纳米管催化剂催化草酸二甲酯加氢制乙醇酸甲酯性能的影响 [J ] . 天然气化工—C1化学与化工 , 2022 , 47 ( 5 ): 84 - 91 .
WANG Z , WU M M , SONG Y W , et al . Effect of calcination temperature on catalytic performance of Cu/SiO 2 nanotube catalysts for hydrogenation of dimethyl oxalate to methyl glycolate [J ] . Natural Gas Chemical Industry , 2022 , 47 ( 5 ): 84 - 91 .
YANG J X , LIN L , ZHANG P , et al . Facile and optimized ion-exchange method for synthesizing low-cost and stable Cu/SiO 2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol [J ] . Industrial & Engineering Chemistry Research , 2023 , 62 ( 37 ): 14866 - 14878 .
CHEN C C , LIN L , YE R P , et al . Mannitol as a novel dopant for Cu/SiO 2 : A low-cost, environmental and highly stable catalyst for dimethyl oxalate hydrogenation without hydrogen prereduction [J ] . Journal of Catalysis , 2020 , 389 : 421 - 431 .
YANG D L , YE R P , LIN L , et al . Boron modified bifunctional Cu/SiO 2 catalysts with enhanced metal dispersion and surface acid sites for selective hydrogenation of dimethyl oxalate to ethylene glycol and ethanol [J ] . Nanomaterials , 2021 , 11 ( 12 ): 3236 .
ZHAO Y J , LI S M , WANG Y , et al . Efficient tuning of surface copper species of Cu/SiO 2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol [J ] . Chemical Engineering Journal , 2017 , 313 : 759 - 768 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533