浏览全部资源
扫码关注微信
1.中国科学院 山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
2.中国科学院大学,北京 100049
3.中科合成油技术股份有限公司,北京 101407
Received:18 March 2025,
Revised:03 April 2025,
Published Online:08 August 2025,
移动端阅览
钱飞,魏子都,朱家欢等.Mn或K修饰ε-Fe2C催化剂的制备及其费托合成性能研究[J].低碳化学与化工,
QIAN Fei,WEI Zidu,ZHU Jiahuan,et al.Study on preparation and Fischer-Tropsch synthesis performances of Mn or K modified ε-Fe2C catalysts[J].Low-Carbon Chemistry and Chemical Engineering,
钱飞,魏子都,朱家欢等.Mn或K修饰ε-Fe2C催化剂的制备及其费托合成性能研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250116.
QIAN Fei,WEI Zidu,ZHU Jiahuan,et al.Study on preparation and Fischer-Tropsch synthesis performances of Mn or K modified ε-Fe2C catalysts[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250116.
铁基催化剂在费托合成(Fischer-Tropsch Synthesis,FTS)反应中具有重要的作用,但其复杂的物相结构与较大的副产物选择性制约了其进一步发展,亟需建立单相铁基催化剂,探究反应流程,并结合助剂的作用增大目标产物选择性。通过普鲁士蓝类似物的热解,成功制备了高稳定性的
ε
-Fe
2
C催化剂,并研究了Mn与K助剂对催化剂结构和催化性能的影响。结果表明,在270 °C、3 MPa、合成气
n
(H
2
):
n
(CO) = 2:1和反应空速(GHSV)为30000 (mL)/(g·h)条件下以及Mn助剂修饰的
ε
-Fe
2
C催化剂作用下反应25 h,CO
2
选择性减小至7.5%,K助剂修饰的
ε
-Fe
2
C催化剂作用下,C
5+
烃类产物选择性可达71.5%。两种助剂修饰的催化剂在反应前后均保持
ε
-Fe
2
C结构,反应80 h中,催化剂活性和产物选择性均保持稳定,Mn助剂修饰的
ε
-Fe
2
C催化剂副产物选择性较小,催化性能更优。通过XRD、TEM和XPS等表征手段,揭示了催化剂的微观结构变化及其对FTS催化性能的影响,发现助剂产生的尺寸效应使得催化剂作用下的CO转化率减小。Mn与K作为电子助剂给催化剂提供电子,保证了催化剂表面结构的稳定性,调控了产物分布。在单相
ε
-Fe
2
C催化剂上引入助剂调控催化活性和产物分布,可为产物选择性较大的FTS催化剂开发提供新思路。
Iron-based catalysts play a crucial role in Fischer-Tropsch Synthesis (FTS). However
their complex phase structures and high by-product selectivities limit further development. It is urgent to establish single-phase iron catalysts
explore the reaction processes and increase target product selectivities with promoters. Highly stable
ε
-Fe
2
C catalysts were successfully prepared by pyrolysis of Prussian Blue Analogues
and the effects of Mn and K promoters on the catalyst structures and catalytic performances were investigated. The results show that under reaction conditions of 270 °C
3 MPa
n
(H
2
):
n
(CO) = 2:
1
and gas hourly space velocity (GHSV) of 30000 mL/(g·h)
with the Mn-modified
ε
-Fe
2
C catalyst
CO
2
selectivity decreases to 7.5%
and with the K-modified
ε
-Fe
2
C catalyst
C
5+
hydrocarbon selectivity reaches 71.5% after 25-hour reaction. The catalysts modified by the two promoters maintain
ε
-Fe
2
C structure before and after the reaction
and their activities and product selectivities remain stable during an 80-hour reaction. The Mn-modified
ε
-Fe
2
C catalyst exhibits better catalytic performance due to low by-product selectivity. By characterization methods such as XRD
TEM
and XPS
the microstructural changes and their effects on FTS catalytic performances of the catalysts were revealed. It is found that the size effect produced by promoters results in a decrease in CO conversion rate with catalysts. Mn and K
as electronic promoters
provide electrons to the catalysts
ensuring the stability of the surface structures and regulating product distributions. The introduction of promoters into
ε
-Fe
2
C catalysts can effectively regulate catalytic activities and product distributions
providing a novel strategy for the development of FTS catalysts with high product selectivities.
ZHAI P , LI Y W , WANG M , et al . Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route [J ] . Chem , 2021 , 7 ( 11 ): 3027 - 3051 .
徐振刚 , 陈亚飞 . 我国煤化工的技术现状与发展对策 [J ] . 煤炭科学技术 , 2007 , 35 ( 8 ): 6 - 12 .
XU Z G , CHEN Y F . Present status of coal chemical technology in China and development countermeasures [J ] . Coal Science and Technology , 2007 , 35 ( 8 ): 6 - 12 .
TORRES GALVIS H M , DE JONG K P . Catalysts for production of lower olefins from synthesis gas: A review [J ] . ACS Catalysis , 2013 , 3 ( 9 ): 2130 - 2149 .
JIAO F , LI J J , PAN X L , et al . Selective conversion of syngas to light olefins [J ] . Science , 2016 , 351 ( 6277 ): 1065 - 1068 .
ZHONG L S , YU F , AN Y L , et al . Cobalt carbide nanoprisms for direct production of lower olefins from syngas [J ] . Nature , 2016 , 538 ( 7623 ): 84 - 87 .
LI Y W , GAO W , PENG M , et al . Interfacial Fe 5 C 2 -Cu catalysts toward low-pressure syngas conversion to long-chain alcohols [J ] . Nature Communications , 2020 , 11 ( 1 ): 61 .
YANG C , ZHAO H B , HOU Y L , et al . Fe 5 C 2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis [J ] . Journal of the American Chemical Society , 2012 , 134 ( 38 ): 15814 - 15821 .
WANG P , CHEN W , CHIANG F K , et al . Synthesis of stable and low-CO 2 selective epsilon-iron carbide Fischer-Tropsch catalysts [J ] . Science Advances , 2018 , 4 ( 10 ): eaau2947 .
ZHAI P , XU C , GAO R , et al . Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe 5 C 2 catalyst [J ] . Angewandte Chemie International Edition , 2016 , 55 ( 34 ): 9902 - 9907 .
MA C P , ZHANG W , CHANG Q , et al . θ -Fe 3 C dominated Fe@C core-shell catalysts for Fischer-Tropsch synthesis: Roles of θ -Fe 3 C and carbon shell [J ] . Journal of Catalysis , 2021 , 393 : 238 - 246 .
GHOSH P S , ALI K , VINEET A , et al . Study of structural, mechanical and thermal properties of θ -Fe 3 C, o -Fe 7 C 3 and h -Fe 7 C 3 phases using molecular dynamics simulations [J ] . Journal of Alloys and Compounds , 2017 , 726 : 989 - 1002 .
FU X P , YU W Z , MA C , et al . Supported Fe 2 C catalysts originated from Fe 2 N phase and active for Fischer-Tropsch synthesis [J ] . Applied Catalysis B: Environmental , 2021 , 284 : 119702 .
LIU Y , CHEN J F , BAO J , et al . Manganese-modified Fe 3 O 4 microsphere catalyst with effective active phase of forming light olefins from syngas [J ] . ACS Catalysis , 2015 , 5 ( 6 ): 3905 - 3909 .
LI S , LIU X Z , LU Y W , et al . Fischer-Trospch to olefins over hydrophobic FeMnO x @SiO 2 catalysts: The effect of SiO 2 shell content [J ] . Applied Catalysis A: General , 2022 , 635 : 118552 .
LU Y W , YU F , HU J , et al . Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst [J ] . Applied Catalysis A: General , 2012 , 429/430 : 48 - 58 .
YANG Z X , ZHANG Z P , LIU Y T , et al . Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light olefins: Effects of Mn promotion [J ] . Applied Catalysis B: Environmental , 2021 , 285 : 119815 .
XU Y F , LI X Y , GAO J H , et al . A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products [J ] . Science , 2021 , 371 ( 6529 ): 610 - 613 .
AN B , CHENG K , WANG C , et al . Pyrolysis of metal-organic frameworks to Fe 3 O 4 @Fe 5 C 2 core-shell nanoparticles for Fischer-Tropsch synthesis [J ] . ACS Catalysis , 2016 , 6 ( 6 ): 3610 - 3618 .
SANTOS V P , WEZENDONK T A , JAEN J J , et al . Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts [J ] . Nature Communications , 2015 , 6 : 6451 .
WEZENDONK T A , SANTOS V P , NASALEVICH M A, et al . Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer-Tropsch catalysts [J ] . ACS Catalysis , 2016 , 6 ( 5 ): 3236 - 3247 .
CHENG Y , LIN J , WU T J , et al . Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO 2 emission and enhanced activity [J ] . Applied Catalysis B: Environmental , 2017 , 204 : 475 - 485 .
HAN Y , FANG C Y , JI X W , et al . Interfacing with carbonaceous potassium promoters boosts catalytic CO 2 hydrogenation of iron [J ] . ACS Catalysis , 2020 , 10 ( 20 ): 12098 - 12108 .
TIAN Z P , WANG C G , SI Z , et al . Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO 4 modified activated carbon by a facile method [J ] . Applied Catalysis A: General , 2017 , 541 : 50 - 59 .
YANG Z , LUO M S , LIU Q L , et al . In situ XRD and Raman investigation of the activation process over K-Cu-Fe/SiO 2 catalyst for Fischer-Tropsch synthesis reaction [J ] . Catalysis Letters , 2020 , 150 ( 8 ): 2437 - 2445 .
LIU X Z , LIN T J , LIU P G , et al . Hydrophobic interfaces regulate iron carbide phases and catalytic performance of FeZnO x nanoparticles for Fischer-Tropsch to olefins [J ] . Applied Catalysis B: Environmental , 2023 , 331 : 122697 .
PAALANEN P P , VAN VREESWIJK S H , DUGULAN A I , et al . Identification of iron carbides in Fe(-Na-S)/ α ‐Al 2 O 3 Fischer-Tropsch synthesis catalysts with X-ray powder diffractometry and Mössbauer absorption spectroscopy [J ] . ChemCatChem , 2020 , 12 ( 20 ): 5121 - 5139 .
QIAN F , BAI J W , CAI Y , et al . Stabilized ε -Fe 2 C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis [J ] . Nature Communications , 2024 , 15 ( 1 ): 5128 .
YANG Y , ZHANG H T , MA H F , et al . Effect of alkalis (Li, Na, and K) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis [J ] . Fuel , 2022 , 326 : 125090 .
OJEDA M , NABAR R , NILEKAR A U , et al . CO activation pathways and the mechanism of Fischer-Tropsch synthesis [J ] . Journal of Catalysis , 2010 , 272 ( 2 ): 287 - 297 .
WU X , MA H F , ZHANG H T , et al . High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe 3 O 4 @MnO 2 core-shell catalysts [J ] . Industrial & Engineering Chemistry Research , 2019 , 58 ( 47 ): 21350 - 21362 .
DING X X , ZHU M , HAN Y F , et al . Revisiting the syngas conversion to olefins over Fe-Mn bimetallic catalysts: Insights from the proximity effects [J ] . Journal of Catalysis , 2023 , 417 : 213 - 225 .
WANG J , XU Y F , MA G Y , et al . Directly converting syngas to linear α -olefins over core-shell Fe 3 O 4 @MnO 2 catalysts [J ] . ACS Applied Materials & Interfaces , 2018 , 10 ( 50 ): 43578 - 43587 .
SHI B F , ZHANG Z P , LIU Y T , et al . Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation [J ] . Journal of Catalysis , 2020 , 381 : 150 - 162 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution