浏览全部资源
扫码关注微信
1.中国科学院 山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
2.中国科学院大学,北京 100049
3.中国煤炭科工集团有限公司 北京天地融创科技股份有限公司,北京 100013
4.中国煤炭科工集团有限公司 煤炭科学技术研究院有限公司,北京 100013
5.大连理工大学 化工学院 精细化工国家重点实验室,辽宁 大连 116024
Received:24 February 2025,
Revised:05 March 2025,
Published Online:16 June 2025,
移动端阅览
韩祝玲,纪任山,周忠波等.Cu改性Pt@AM催化剂在低温水煤气变换反应中的性能研究[J].低碳化学与化工,
HAN Zhuling,JI Renshan,ZHOU Zhongbo,et al.Study on performance of Cu-modified Pt@AM catalysts in low-temperature water-gas shift reaction[J].Low-Carbon Chemistry and Chemical Engineering,
韩祝玲,纪任山,周忠波等.Cu改性Pt@AM催化剂在低温水煤气变换反应中的性能研究[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250069.
HAN Zhuling,JI Renshan,ZHOU Zhongbo,et al.Study on performance of Cu-modified Pt@AM catalysts in low-temperature water-gas shift reaction[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250069.
低温水煤气变换反应(WGSR)是制氢工业的关键环节。针对传统催化剂低温活性差和贵金属催化剂贵金属用量高的问题,采用简单混合法将Pt盐与Cu盐混合后加入钼酸铵中超声、焙烧,制备了Cu改性Pt@AM催化剂用于低温催化WGSR。研究结果表明,在Pt@AM中加入少量Cu不仅有利于
α
-MoC结构的形成,还能增强金属间相互作用,调节活性位点分布,从而提升催化剂催化活性。其中,0.05%Pt-0.5Cu%@AM在温度200 ℃、原料气
V
(CO):
V
(H
2
O):
V
(N
2
) = 2:5:18和空速40000 mL/(g·h)的反应条件下,反应1 h后表现出高达73.5%的CO转化率和38.6%的H
2
产率,说明Cu改性显著提高了贵金属Pt基催化剂催化活性。同时,揭示了Cu改性提高催化剂催化活性的构效关系,为设计低温高活性WGSR催化剂提供了理论依据。
Low-temperature water-gas shift reaction (WGSR) is a key bridge in hydrogen production industry. In response to the poor low-temperature activity of traditional catalysts and the high metal content of noble mental catalysts
a simple mixing method was used to mix Pt salt and Cu salt
and then add them to ammonium molybdate for ultrasonic and calcination to prepare Cu-modified Pt@AM catalysts in low-temperature WGSR. The results show that adding a small amount of Cu to Pt@AM not only facilitates the formation of
α
-MoC
but also enhances the interaction between metals
adjust the distribution of active sites
and thus improves the catalytic activity of catalysts. Among them
0.05%Pt-0.5Cu%@AM catalyst shows a high CO conversion rate of up to 73.5% and a H
2
yield of 38.6% after 1 h reaction under the reaction conditions of temperature of 200 ℃
feed gas
V
(CO):
V
(H
2
O):
V
(N
2
) = 2:5:18 and space velocity of 40000 mL/(g·h)
indicating that Cu modification significantly improves the catalytic activity of noble metal Pt based catalysts. At the same time
the structure-activity relationship of Cu modification to improve catalytic activity of catalysts was revealed
providing a theoretical basis for designing low-temperature WGSR catalyst with high activity.
曹军文 , 张文强 , 李一枫 , 等 . 中国制氢技术的发展现状 [J ] . 化学进展 , 2021 , 33 ( 12 ): 2215 - 2244 .
CAO J W , ZHANG W Q , LI Y F , et al . Current status of hydrogen production in China [J ] . Progress in Chemistry , 2021 , 33 ( 12 ): 2215 - 44 .
李智 , 朱小梅 , 杨雨桐 , 等 . Au负载催化剂应用于水煤气变换制氢反应的研究进展 [J ] . 分子催化 , 2023 , 37 ( 2 ): 202 - 212 .
LI Z , ZHU X M , YANG Y T , et al . Research Progress in application of Au supported catalysts in hydrogen production by water gas shift reaction [J ] . Journal of Molecular Catalysis , 2023 , 37 ( 2 ): 202 - 212 .
GHOSH S , HARIHARAN S , TIWARI A K . Water adsorption and dissociation on copper/nickel bimetallic surface alloys: Effect of surface temperature on reactivity [J ] . Journal of Physical Chemistry C , 2017 , 121 ( 30 ): 16351 - 16365 .
YE J W , SONG S , CUI Z H , et al . Facile synthesis of efficient and robust Cu-Zn-Al catalysts by the sol-gel method for the water-gas shift reaction [J ] . Industrial & Engineering Chemistry Research , 2023 , 62 ( 38 ): 15386 - 15394 .
CHEN W H , CHEN C Y . Water gas shift reaction for hydrogen production and carbon dioxide capture: A review [J ] . Applied Energy , 2020 , 258 : 114078 .
TEPAMATR P , CHAROJROCHKUL S , LAOSIRIPOJANA N . Water-gas shift activity over Ni/A l2 O 3 composites [J ] . Journal of Composites Science , 2024 , 8 ( 7 ): 239 .
CHEN X , QU C , XIAO Y , et al . Enhanced water gas shift reaction by CeO 2 anchored Pt single atom catalyst [J ] . Catalysis Today , 2024 , 434 : 114687 .
XIAO Y , QU C , CHEN X , et al . Low loading Pt single atoms supported on KIT-6-functionalized Sm 0.8 Sr 0.2 CoO 3 for water gas shift reaction [J ] . International Journal of Hydrogen Energy , 2025 , 104 : 23 - 33 .
LI J , SUN L , WAN Q , et al . α -MoC supported noble metal catalysts for water-gas shift reaction: Single-atom promoter or single-atom player [J ] . Journal of Physical Chemistry Letters , 2021 , 12 ( 46 ): 11415 - 11421 .
SU Y Q , XIA G J , QIN Y Y , et al . Lattice oxygen self-spillover on reducible oxide supported metal cluster: The water-gas shift reaction on Cu/CeO 2 catalyst [J ] . Chemical Science , 2021 , 12 ( 23 ): 8260 - 8267 .
ANDREEVA D , IDAKIEV V , TABAKOVA T , et al . Low-temperature water-gas shift reaction over Au/CeO 2 catalysts [J ] . Catalysis Today , 2002 , 72 ( 1/2 ): 51 - 57 .
ZHANG X , ZHANG M T , DENG Y C , et al . A stable low-temperature H 2 -production catalyst by crowding Pt on α -MoC [J ] . Nature , 2021 , 589 : 396 - 401 .
CAI F F , IBRAHIM J J , FU Y , et al . Low-temperature hydrogen production from methanol steam reforming on Zn-modified Pt/MoC catalysts [J ] . Applied Catalysis B: Environmental , 2020 , 264 : 118500 .
ABDEL-MAGEED A M , KUCEROVA G , BANSMANN J , et al . Active Au species during the low-temperature water gas shift react ion on Au/CeO 2 : A time-resolved operando XAS and DRIFTS study [J ] . ACS Catalysis , 2017 , 7 ( 10 ): 6471 - 6484 .
AMMAL S C , HEYDEN A . Water-gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports [J ] . ACS Catalysis , 2017 , 7 ( 1 ): 301 - 309 .
MA Y J , LIU B , JING M M , et al . Promoted potassium salts based Ru/AC catalysts for water gas shift reaction [J ] . Chemical Engineering Journal , 2016 , 287 : 155 - 161 .
XU M , YAO S Y , RAO D M , et al . Insights into interfacial synergistic cataly sis over Ni@TiO 2- x catalyst toward water-gas shift reaction [J ] . Journal of the American Chemical Society , 2018 , 140 ( 36 ): 11241 - 11251 .
YAN H , QIN X T , YIN Y , et al . Promoted Cu-Fe 3 O 4 catalysts for low-temperature water gas shift reaction: Optimization of Cu content [J ] . Applied Catalysis B: Environmental , 2018 , 226 : 182 - 193 .
CHEN C Q , ZHAN Y Y , ZHOU J K , et al . Cu/CeO 2 catalyst for water-gas shift reaction: Effect of CeO 2 pretreatment [J ] . ChemPhysChem , 2018 , 19 ( 12 ): 1448 - 1455 .
WANG Y B , ZHANG T T , ZHU L Y , et al . The catalytic activity of Pt atomic-doped Cu(111) surface alloy for the water dissociation reaction [J ] . Chemical Physics , 2021 , 543 : 111060 .
KUGAI J , MILLER J T , GUO N , et al . Oxygen-enhanced water gas shift on ceria-supported Pd-Cu and Pt-Cu bimetallic catalysts [J ] . Journal of Catalysis , 2011 , 277 ( 1 ): 46 - 53 .
LI R Y , ZHENG X H , WANG F , et al . Optimizing Mo-C coordination for enhanced low-temperature water-gas shift activity over α -MoC 1- x catalysts: An experimental and theoretical study [J ] . Chemical Engineering Journal , 2023 , 474 : 145645 .
夏瑶靓 , 边凯 , 刘思蕊 , 等 . PtSn@S-1 & β -Mo 2 C串联催化剂CO 2 氧化丙烷脱氢制丙烯性能研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 7 ): 96 - 103 .
XIA Y L , BIAN K , LIU S R , et al . Study on performance of PtSn@S-1 & β -Mo 2 C tandem catalyst in CO 2 -oxidative propane dehydrogenation to propylene [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 7 ): 96 - 103 .
ZHANG X , LIU Y , ZHANG M T , et al . Synergy between β -Mo 2 C nanorods and non-thermal plasma for selective CO 2 reduction to CO [J ] . Chem , 2020 , 6 ( 12 ): 3312 - 3328 .
SUN X T , YU J F , TONG X , et al . Controlling phase transfer of molybdenum carbides by various metals for highly efficient hydrogen production [J ] . Journal of Energy Chemistry , 2021 , 62 : 191 - 197 .
JUNG K T , KIM W B , RHEE C H , et al . Effects of transition metal addition on the solid-state transformation of molybdenum trioxide to molybdenum carbides [J ] . Chemistry of Materials , 2004 , 16 ( 2 ): 307 - 314 .
VOLPE L , BOUDART M . Compounds of molybdenum and tungsten with high specific surface area: II. Carbides [J ] . Journal of Solid State Chemistry , 1985 , 59 ( 3 ): 348 - 356 .
VANNICE M A , BOUDART M , FRIPIAT J J . Mobility of hydrogen in hydrogen tungsten bronze [J ] . Journal of Catalysis , 1970 , 17 ( 3 ): 359 - 365 .
CIRILLO A , FRIPIAT J J . Proton mobility in molybdenum bronzes [J ] . Journal de Physique et le Radium , 1978 , 39 ( 3 ): 247 - 55 .
YAO S Y , ZHANG X , ZHOU W , et al . Atomic-layered Au clusters on α -MoC as catalysts for the low-temperature water-gas shift reaction [J ] . Science , 2017 , 357 ( 6349 ): 389 - 393 .
ZHAO F L , YUAN Q , LUO B , et al . Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation [J ] . Science China Materials , 2019 , 62 ( 12 ): 1877 - 1887 .
罗柳轩 , 魏光华 , 沈水云 , 等 . Pt-Cu合金纳米枝晶的合成及其氧还原催化性能 [J ] . 电化学 , 2018 , 24 ( 6 ): 733 - 739 .
LUO L X , WEI G H , SHEN S Y . Facile synthesis of Pt-Cu alloy nanodendrites as high-performance electrocatalysts for oxygen reduction reaction [J ] . Journal of Electrochemistry , 2018 , 24 ( 6 ): 733 - 739 .
PANG M , LI C , DING L , et al . Microwave-assisted preparation of Mo 2 C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction [J ] . Industrial & Engineering Chemistry Research , 2010 , 49 ( 9 ): 4169 - 4174 .
WANG B B , WANG G , WANG H . Hybrids of Mo 2 C nanoparticles anchored on graphene sheets as anode materials for high performance lithium-ion batteries [J ] . Journal of Materials Chemistry A , 2015 , 3 ( 33 ): 17403 - 17411 .
孙健 . 碳化钼基催化剂的制备、表征及其合成气制低碳醇性能研究 [D ] . 呼和浩特 : 内蒙古大学 , 2020 .
SUN J . Preparation and characterization of molybdenum carbide-based catalysts and their catalytic performance for higher alcohols synthesis from syngas [D ] . Hohhot : Inner Mongolia University , 2020 .
MIR R A , PANDEY O P . Waste plastic derived carbon supported Mo 2 C composite catalysts for hydrogen production and energy storage applications [J ] . Journal of Cleaner Production , 2019 , 218 : 644 - 655 .
FERRARI A C . Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J ] . Solid State Communications , 2007 , 143 ( 1/2 ): 47 - 57 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution