浏览全部资源
扫码关注微信
中石化(上海)石油化工研究院有限公司,上海 201208
Received:19 February 2025,
Revised:06 April 2025,
Published Online:07 July 2025,
移动端阅览
屠晓萍.ZrO(OH)2催化肉桂醛转移加氢制备肉桂醇[J].低碳化学与化工,
TU Xiaoping.Preparation of cinnamyl alcohol via transfer hydrogenation of cinnamaldehyde catalyzed by ZrO(OH)2[J].Low-Carbon Chemistry and Chemical Engineering,
屠晓萍.ZrO(OH)2催化肉桂醛转移加氢制备肉桂醇[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250062.
TU Xiaoping.Preparation of cinnamyl alcohol via transfer hydrogenation of cinnamaldehyde catalyzed by ZrO(OH)2[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250062.
肉桂醛催化转移加氢制备肉桂醇具有重要的现实意义,催化剂是实现肉桂醛选择性加氢的关键。采用沉淀法在不同陈化温度下制备了一系列ZrO(OH)
2
催化剂,并以陈化温度为25 ℃所得ZrO(OH)
2
-25进行煅烧制得ZrO
2
-25。分别采用XRD、N
2
吸/脱附、SEM、Py-IR和XPS对ZrO(OH)
2
-25和ZrO
2
-25的晶相结构、织构性质、微观形貌、酸位点和—OH含量进行了表征。研究了两种
催化剂的催化性能并考察了陈化温度、反应温度、肉桂醛投料量和供氢剂种类对ZrO(OH)
2
-25催化性能的影响。结果表明,ZrO(OH)
2
-25呈现无定形态,比表面积为295 m
2
/g,而ZrO
2
为四方晶型,比表面积为144 m
2
/g。在0.25 mmol肉桂醛、3 mL异丙醇为供氢剂、40 mg ZrO(OH)
2
-25、1 MPa N
2
、反应温度为120 °C和反应时间为4.0 h的最优反应条件下,ZrO(OH)
2
-25的肉桂醛转化率为97.1%,肉桂醇选择性为82.4%。在相同条件下,ZrO(OH)2-25表现出较ZrO2-25更好的催化性能与其表面丰富的—OH有关。
The catalytic transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol is of great practical significance
and the catalyst is the key to achieving selective hydrogenation of cinnamaldehyde. A series of ZrO(OH)
2
catalysts were prepared by precipitation method at different aging temperatures
and ZrO
2
-25 was obtained by calcining ZrO(OH)
2
-25
which was aged at 25 ℃. The crystal phase structures
textural properties
microscopic morphologies
acid sites and —OH contents of ZrO(OH)
2
-25 and ZrO
2
-25 were characterized by XRD
N
2
adsorption/desorption
SEM
Py-IR and XPS
respectively. The catalytic performances of the two catalysts were evaluated
and the effects of aging temperatures
reaction temperatures
cinnamaldehyde feeding amounts and hydrogen donor types on the catalytic performance of ZrO(OH)
2
-25 were investigated. The results show that ZrO(OH)
2
-25 exhibits amorphous state with specific surface area of 295 m
2
/g
while ZrO
2
-25 has tetragonal crystal structure with specific surface area of 144 m
2
/g. Under the optimal reaction conditions of 0.25 mmol cinnamaldehyde
3 mL isopropanol as hydrogen donor
40 mg ZrO(OH)
2
-25
1 MPa N
2
reaction temperature of 120 ℃ and reaction time of 4.0 h
the cinnamaldehyde conversion rate reaches 97.1% and the cinnamyl alcohol selectivity reaches 82.4%. The better catalytic performance of ZrO(OH)
2
-25 than ZrO2-25 under same conditions is attributed to abundant —OH on its surface.
WANG X F , LIANG X H , GENG P , et al . Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts [J ] . ACS Catalysis , 2020 , 10 ( 4 ): 2395 - 2412 .
YANG X , CHEN D , LIAO S J , et al . High-performance Pd-Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation [J ] . Journal of Catalysis , 2012 , 291 : 36 - 43 .
王单 , 刘通 , 肖瑞 , 等 . 肉桂醛选择性加氢的研究进展 [J ] . 山东化工 , 2018 , 47 ( 14 ): 38 - 40 .
WANG D , LIU T , XIAO R , et al . Research progress on selective hydrogenation of cinnamaldehyde [J ] . Shandong Chemical Industry , 2018 , 47 ( 14 ): 38 - 40 .
CUI H S , LIU S H , LV Y , et al . Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: Identification of the formed metal-N as the structure of an active site [J ] . Journal of Catalysis , 2020 , 381 : 468 - 481 .
LIU X M , CHENG S J , LONG J L , et al . MOFs-derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α , β -unsaturated aldehydes without use of base additives [J ] . Materials Chemistry Frontiers , 2017 , 1 ( 10 ): 2005 - 2012 .
SIDDQUI N , SARKAR B , PENDEM C , et al . Highly selective transfer hydrogenation of α , β -unsaturated carbonyl compounds using Cu-based nanocatalysts [J ] . Catalysis Science & Technology , 2017 , 7 ( 13 ): 2828 - 2837 .
PLESSERS E , DE VOS D E , ROEFFAERS M B J . Chemoselective reduction of α , β -unsaturated carbonyl compounds with UiO-66 materials [J ] . Journal of Catalysis , 2016 , 340 : 136 - 143 .
KUWAHARA Y , KANGO H , YAMASHITA H . Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ -valerolactone over sulfonic acid-functionalized UiO-66 [J ] . ACS Sustainable Chemistry & Engineering , 2017 , 5 ( 1 ): 1141 - 1152 .
谢有为 , 陈静 , 于峰 , 等 . 调节剂对UiO-66在糠醛转移加氢制糠醇反应中催化性能的影响 [J ] . 化工进展 , 2023 , 42 ( 11 ): 5756 - 5763 .
XIE Y W , CHEN J , YU F , et al . Effect of regulators on the catalytic performance of UiO-66 in furfural transfer hydrogenation to furfuryl alcohol [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 11 ): 5756 - 5763 .
SUSHKEVICH V L , IVANOVA I I , TOLBORG S , et al . Meerwein-Ponndorf-Verley-Oppenauer reaction of crotonaldehyde with ethanol over Zr-containing catalysts [J ] . Journal of Catalysis , 2014 , 316 : 121 - 129 .
ZHU Z K , YANG L L , KE C X , et al . Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO 2 with abundant surface acid-base sites [J ] . Dalton Transactions , 2021 , 50 ( 7 ): 2616 - 2626 .
HAO W W , LI W F , TANG X , et al . Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan [J ] . Green Chemistry , 2016 , 18 ( 4 ): 1080 - 1088 .
BRENIER R , MUGNIER J , MIRICA E . XPS study of amorphous zirconium oxide films prepared by sol-gel [J ] . Applied Surface Science , 1999 , 143 ( 1/2/3/4 ): 85 - 91 .
FRANKCOMBE T J , LIU Y . Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO [J ] . Chemistry of Materials , 2023 , 35 ( 14 ): 5468 - 5474 .
MONDAL A , RAM S . Monolithic t -ZrO 2 Nanopowder through a ZrO(OH) 2 · x H 2 O polymer pre cursor [J ] . Journal of the American Ceramic Society , 2004 , 87 ( 12 ): 2187 - 2194 .
WANG H J , LIU B Y , LIU F , et al . Transfer hydrogenation of cinnamaldehyde catalyzed by Al 2 O 3 using ethanol as a solvent and hydrogen donor [J ] . ACS Sustainable Chemistry & Engineering , 2020 , 8 ( 22 ): 8195 - 8205 .
YANG Z , HUANG Y B , GUO Q X , et al . RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ -valerolactone at room temperature [J ] . Chemical Communications , 2013 , 49 ( 46 ): 5328 .
YIN D D , LI C , LIU J X , et al . Chemically modulated synthesis of UiO‐66 (X) for catalytic transfer hydrogenation of cinnamaldehyde [J ] . ChemistrySelect , 2022 , 7 ( 31 ): e202201106 .
CHEN J W , XIA Y M , LING Y X , et al . Zn single-atom catalysts enable the catalytic transfer hydrogenation of α , β -unsaturated aldehydes [J ] . Nano Letters , 2024 , 24 ( 17 ): 5197 - 5205 .
CUI H S , ZHONG L H , LV Y , et al . A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes [J ] . Fuel , 2022 , 317 : 123551 .
ZHANG P , BAI L L , WANG Y , et al . Construction of intimate Lewis acid and basic sites on an Al 2 O 3 -NC composite catalyst with enhanced performance in transfer hydrogenation of cinnamaldehyde [J ] . Catalysis Science & Technology , 2024 , 14 ( 9 ): 2441 - 2451 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution