浏览全部资源
扫码关注微信
1.中国石油集团安全环保技术研究院有限公司,北京 102206
2.上海交通大学 制冷与低温工程研究所,上海 200240
Received:08 January 2025,
Revised:18 February 2025,
Published Online:08 June 2025,
移动端阅览
郑家乐,王魁华,陈彦霖等.基于sTVSA的直接空气捕集系统模拟分析[J].低碳化学与化工,
ZHENG Jiale,WANG Kuihua,CHEN Yanlin,et al.Simulation analysis of direct air capture system based on sTVSA[J].Low-Carbon Chemistry and Chemical Engineering,
郑家乐,王魁华,陈彦霖等.基于sTVSA的直接空气捕集系统模拟分析[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250010.
ZHENG Jiale,WANG Kuihua,CHEN Yanlin,et al.Simulation analysis of direct air capture system based on sTVSA[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250010.
蒸汽辅助变温真空吸附(sTVSA)循环捕集CO
2
是一种具有应用前景的直接空气捕集(DAC)技术,具有解吸动力学快、驱动势差高及可抑制水脱附等优势。为探讨sTVSA循环在DAC系统中的应用潜力,提出了六步法sTVSA循环(简称“sTVSA循环”),并基于所构建的吸附床及吸附-解吸模型,开展了热力学、动力学及能耗分析。模拟结果表明,与传统变温真空吸附(TVSA)循环相比,在相同的解吸温度与解吸压力下,sTVSA循环可使系统CO
2
循环容量提高近一倍,并加速解吸动力学,显著提升了系统CO
2
产量。此外,蒸汽吹扫还可降低系统对解吸温度及解吸压力的要求,使所需解吸温度由100 ℃降至90 ℃,解吸压力由3 kPa升至5 kPa,相较于单纯TVSA循环,能耗降低约19%。因此,基于sTVSA循环构建DAC系统,可有效降低设备投资与运行成本,促进DAC系统的工程化应用,展现出良好的技术前景。
Steam-assisted temperature vacuum swing adsorption (sTVSA) cycle for CO
2
capture is a promising direct air capture (DAC) technology
featuring fast desorption kinetics
high driving potential difference and inhibition of water desorption. To explore the application potential of the sTVSA cycle in DAC systems
A six-step sTVSA cycle (referred to as the “sTVSA cycle”) was proposed. Based on the constructed adsorption bed and adsorption/desorption model
thermodynamic
kinetic and energy consumption analyses were conducted. Simulation results show that
compared with the traditional temperature vacuum swing adsorption (TVSA) cycle
the sTVSA cycle can nearly double the system’s CO
2
cyclic capacity under the same desorption temperature and pressure
accelerate desorption kinetics
and significantly improve system’s CO
2
production. In addition
steam purging reduces the system requirements for desorption temperature and pressure
lowering the required desorption temperature from 100 ℃ to 90 ℃ and increasing the desorption pressure from 3 kPa to 5 kPa. Compared to a simple TVSA cycle
energy consumption is reduced by approximately 19%. Therefore
constructing a DAC system based on the sTVSA cycle can effectively reduce equ
ipment investment and operational costs
promote the engineering application of DAC systems
and demonstrates promising technical prospects.
NASA . Carbon dioxide [EB/OL ] . [ 2024-11-16 ] . https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 .
PERSKIN J B , TRAUM M J , VON HIPPEL T , et al . On the feasibility of precompression for direct atmospheric cryogenic carbon capture [J ] . Carbon Capture Science & Technology , 2022 , 4 : 100063 .
RAZA A , GHOLAMI R , REZAEE R , et al . Significant aspects of carbon capture and storage—A review [J ] . Petroleum , 2019 , 5 ( 4 ): 335 - 340 .
SEIPP C A , WILLIAMS N J , KIDDER M K , et al . CO 2 capture from ambient air by crystallization with a guanidine sorbent [J ] . Angewandte chemie international edition , 2017 , 56 ( 4 ): 1042 - 1045 .
SHI X Y , XIAO H , AZARABADI H , et al . Sorbents for the direct capture of CO 2 from ambient air [J ] . Angewandte Chemie International Edition , 2020 , 59 ( 18 ): 6984 - 7006 .
SABATINO F , GRIMM A , GALLUCCI F , et al . A comparative energy and costs assessment and optimization for direct air capture technologies [J ] . Joule , 2021 , 5 ( 8 ): 2047 - 2076 .
ABDULLATIF Y , SODIQ A , MIR N , et al . Emerging trends in direct air capture of CO 2 : A review of technology options targeting net-zero emissions [J ] . RSC Advances , 2023 , 13 ( 9 ): 5687 - 722 .
ZHU X C , GE T S , WU J Y , et al . Large-scale applications and challenges of adsorption-based carbon capture technologies [J ] . Chinese Science Bulletin , 2021 , 66 ( 22 ): 2861 - 2877 .
ZHU X C , XIE W W , WU J Y , et al . Recent advances in direct air capture by adsorption [J ] . Chemical Society Reviews , 2022 , 51 ( 15 ): 6574 - 6651 .
王涛 , 董昊 , 侯成龙 , 等 . 直接空气捕集CO 2 吸附剂综述 [J ] . 浙江大学学报(工学版) , 2022 , 56 ( 3 ): 462 - 675 .
WANG T , DONG H , HOU C L , et al . Review of CO 2 direct air capture adsorbents [J ] . Journal of Zhejiang University (Engineering Science) , 2022 , 56 ( 3 ): 462 - 475 .
余斌鹏 , 谈磊 , 王鼎 , 等 . 直接空气捕集CO 2 典型工艺与关键装置开发进展 [J ] . 煤炭学报 , 2024 , 49 ( 10 ): 4203 - 21 .
YU B P , TAN L , WANG D , et al . Development of typical processes and key devices for direct air CO 2 capture [J ] . Journal of China Coal Society , 2024 , 49 ( 10 ): 4256 - 4274 .
赵俊德 , 周爱国 , 陈彦霖 , 等 . 吸附法CO 2 直接空气捕集技术能耗现状 [J ] . 化工学报 , 2025 , 76 ( 4 ): 1375 - 1390 .
ZHAO J D , ZHOU A G , CHEN Y L , et al . Current status of energy consumption of adsorption CO 2 direct air capture [J ] . CIESC Journal , 2025 , 76 ( 4 ): 1375 - 1390 .
GEBALD C , REPOND N , WURZBACHER J A . Steam assisted vacuum desorption process for carbon dioxide capture : US 10 , 279 , 306 [P ] . 2019-05-07 .
WIJESIRI R P , KNOWLES G P , YEASMIN H , et al . Desorption process for capturing CO 2 from air with supported amine sorbent [J ] . Industrial & Engineering Chemistry Research , 2019 , 58 ( 34 ): 15606 - 15618 .
ZHU X C , GE T S , YANG F , et al . Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO 2 capture from ambient air [J ] . Renewable and Sustainable Energy Reviews , 2021 , 137 : 110651 .
ERGUN S . Fluid flow through packed columns [J ] . Chemical Engineering Progress , 1952 , 48 ( 2 ): 89 - 94 .
SINHA A , DARUNTE L A , JONES C W , et al . Systems design and economic analysis of direct air capture of CO 2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg 2 (dobpdc) MOF adsorbents [J ] . Industrial & Engineering Chemistry Research , 2017 , 56 ( 3 ): 750 - 764 .
OZKAN M . Atmospheric alchemy: The energy and cost dynamics of direct air carbon capture [J ] . MRS Energy & Sustainability , 2025 , 12 : 46 - 61 .
YOUNG J , GARCÍA-DÍEZ E , GARCIA S , et al . The impact of binary water-CO 2 isotherm models on the optimal performance of sorbent-based direct air capture processes [J ] . Energy & environmental science , 2021 , 14 ( 10 ): 5377 - 5394 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution