浏览全部资源
扫码关注微信
1.江西理工大学 材料冶金化学学部,江西 赣州 341000
2.香港高等教育科技学院 建造、环境与工程学系, 香港 999077
3.江西同益高分子材料科技有限公司,江西 赣州 341600
4.信丰迅捷兴电路科技有限公司, 江西 赣州 341600
Received:04 January 2025,
Revised:24 February 2025,
Published Online:25 April 2025,
移动端阅览
李立清,薛茹萍,余思彤等.赣南脐橙皮热解过程的机理研究及能源转化特性分析[J].低碳化学与化工,
LI Liqing,XUE Ruping,YU Sitong,et al.Mechanistic study of pyrolysis process and characteristics analysis of energy conversion of Gannan navel orange peel[J].Low-Carbon Chemistry and Chemical Engineering,
李立清,薛茹萍,余思彤等.赣南脐橙皮热解过程的机理研究及能源转化特性分析[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20250004.
LI Liqing,XUE Ruping,YU Sitong,et al.Mechanistic study of pyrolysis process and characteristics analysis of energy conversion of Gannan navel orange peel[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20250004.
赣南脐橙皮是典型的农林废弃物,其资源化利用与无害化处理对于环境保护和可持续发展具有重要意义。采用热重分析与固定床热解实验,系统探讨了升温速率、热解温度和反应时间对赣南脐橙皮热解性能的影响。通过K
issinger-Akahira-Sunose(KAS)、Ozawa-Flynn-Wall(OFW)和Friedman(FM)模型,获取了赣南脐橙皮热解动力学和热力学参数。此外,采用SEM对热解生物炭形貌进行了表征,热解气体产物和液体产物分别通过GC与GC-MS进行了分析。热重结果表明,赣南脐橙皮热解主要发生在150~400 ℃,较大的升温速率导致热解过程存在热滞后现象,降低了反应效率。动力学结果表明,随着赣南脐橙皮转化率的增大,活化能(
E
a
)逐渐增大。热力学结果表明,升温速率越大,焓变(Δ
H
)和熵变(Δ
S
)越小,吉布斯自由能变(Δ
G
)越大,不利于反应进行。固定床热解实验结果表明,赣南脐橙皮最佳热解条件为反应温度500 °C、升温速率10 °C/min和反应时间1.0 h,此时热解气、热解液和生物炭产率分别为26.81%、47.27%和25.91%。热解气主要包含H
2
、CO和CO
2
,热解液主要包含醛类和酚类化合物,生物炭表面呈现大量不规则孔隙。综合分析表明,赣南脐橙皮具备较高的能源化潜力,为其资源化利用提供了理论依据。
Gannan navel orange peel is a typical agricultural and forestry waste
and its resource utilization and harmless disposal are of significant importance for environmental protection and sustainable development. By thermogravimetric analysis and fixed-bed pyrolysis experiment
the effects of heating rate
pyrolysis temperature and reaction time on the pyrolysis performance of Gannan navel orange peel were systematically explored. The kinetic and thermodynamic parameters of Gannan navel orange peel pyrolysis were obtained by Kissinger-Akahira-Sunose (KAS)
Ozawa-Flynn-Wall (OFW) and Friedman (FM) models. Additionally
SEM was used to characterize the morphology of pyrolysis biochar
and the pyrolysis gas and liquid products were analyzed by GC and GC-MS
respectively. The thermogravimetric results indicate that Gannan navel orange peel pyrolysis primarily occurs between 150~400 ℃. The higher heating rate leads to thermal lag in the pyrolysis process
which reduces the reaction efficiency. The kinetic results show that as the Gannan navel orange peel conversion rate increases
the activation energy (
E
a
) increases. The thermodynamic results show that as the heating rate increases
the enthalpy change (Δ
H
) and entropy change (Δ
S
) decrease
and Gibbs free energy change (Δ
G
) increases
making the reaction less fav
orable. The fixed-bed pyrolysis experiment results show that the optimal pyrolysis conditions were reaction temperature of 500 ℃
heating rate of 10 ℃/min and reaction time of 1.0 h. At this time
the yields of pyrolysis gas
pyrolysis liquid and biochar were 26.81%、47.27% and 25.91%
respectively. The pyrolysis gas mainly includes H
2
CO
and CO
2
and the pyrolysis liquid mainly includes aldehydes and phenolic compounds
and the biochar surface exhibites a large number of irregular pores. Overall
Gannan navel orange peel has high potential for energy conversion
providing a theoretical basis for its resource utilization.
ZHAO X , MA X W , CHEN B Y , et al . Challenges toward carbon neutrality in China: Strategies and countermeasures [J ] . Resources, Conservation and Recycling , 2022 , 176 : 105959 .
LI F H , SRIVATSA S C , BHATTACHARYA S . A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds [J ] . Renewable and Sustainable Energy Reviews , 2019 , 108 : 481 - 497 .
CHEN W H , LIN B J , HUANG M Y , et al . Thermochemical conversion of microalgal biomass into biofuels: A review [J ] . Bioresource Technology , 2015 , 184 : 314 - 327 .
CHOWDHURY S , MAZUMDER M A J , Al-ATTAS O , et al . Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries [J ] . Science of the Total Environment , 2016 , 569/570 : 476 - 488 .
ZHANG C Y , HO S H , CHEN W H , et al . Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index [J ] . Applied Energy , 2018 , 220 : 598 - 604 .
RAJAMOHAN S , CHIDAMBARESH S , SUNDARRAJAN H , et al . Investigation of thermodynamic and kinetic parameters of albizia lebbeck seed pods using thermogravimetric analysis [J ] . Bioresource Technology , 2023 , 384 : 129333 .
ALVES J L F , DA SILVA J C G , DA SILVA FILHO V F , et al . Determination of the bioenergy potential of brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis [J ] . BioEnergy Research , 2019 , 12 : 168 - 183 .
CUI S , LV J L , HOUGH R , et al . Recent advances and prospects of neonicotinoid insecticides removal from aquatic environments using biochar: Adsorption and degradation mechanisms [J ] . Science of the Total Environment , 2024 , 939 : 173509 .
NGUYEN M K , LIN C , HOANG H G , et al . Investigation of biochar amendments on odor reduction and their characteristics during food waste co-composting [J ] . Science of The Total Environment , 2023 , 865 : 161128 .
JERZAK W , MLONKA-MEDRALA A , GAO N B , et al . Potential of products from high-temperature pyrolysis of biomass and refuse-derived fuel pellets [J ] . Biomass and Bioenergy , 2024 , 183 : 107159 .
ATREYA A , OLSZEWSKI P , CHEN Y W , et al . The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands [J ] . International Journal of Heat and Mass Transfer , 2017 , 107 : 319 - 328 .
SOMERVILLE M , DEEV A . The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood [J ] . Renewable Energy , 2020 , 151 : 419 - 425 .
谭敏华 , 白卫东 , 周金林 , 等 . 脐橙皮膳食纤维的改性及功能性研究进展 [J ] . 农产品加工 , 2020 , ( 10 ): 64 - 67+71 .
TAN M H , BAI W D , ZHOU J L , et al . Research progress in modification and functionality of navel orange peel dietary fiber [J ] . Farm Products Processing , 2020 , ( 10 ): 64 - 67+71 .
XIA Y , ZHU C , OUYANG S B , et al . Thermogravimetric characteristics and evaluation of products during pyrolysis of camellia oleifera seed residues [J ] . Biomass Conversation and Biorefinery , 2025 , 15 : 4677 - 4693 .
QUAN C , GAO N B , SONG Q B . Pyrolysis of biomass components in a tga and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization [J ] . Journal of Analytical and Applied Pyrolysis , 2016 , 121 : 84 - 92 .
QU Y , LI A M , WANG D , et al . Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge [J ] . Chemical Engineering Journal , 2019 , 374 : 338 - 346 .
NISAR J , ALI G , SHAH A , et al . Pyrolysis of expanded waste polystyrene: Influence of nickel-doped copper oxide on kinetics, thermodynamics, and product distribution [J ] . Energy Fuels , 2019 , 33 ( 12 ): 12666 - 12678 .
ALI G , NISAR J , IQBAL M , et al . Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models [J ] . Waste Management & Research , 2020 , 38 ( 2 ): 202 - 212 .
周千惠 , 魏文胜 , 张卫海 , 等 . 乙烯基醚系列产品合成过程的热力学研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 3 ): 53 - 62 .
ZHOU Q H , WEI W S , ZHANG W H , et al . Thermodynamic study on synthesis process of vinyl ether series products [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 3 ): 53 - 62 .
FAN F Y , ZHENG Y W , HUANG Y B , et al . Preparation and characterization of biochars from waste camellia oleifera shells by different thermochemical processes [J ] . Energy & Fuels , 2017 , 31 ( 8 ): 8146 - 8151 .
TANG F F , YU Z S , LI Y , et al . Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris [J ] . Bioresource Technology , 2020 , 299 : 122636 .
CHAKRAVARTY K H , SADI M , CHAKRAVARTY H , et al . Pyrolysis kinetics and potential utilization analysis of cereal biomass by-products; an experimental analysis for cleaner energy productions in India [J ] . Chemosphere , 2024 , 353 : 141420 .
HOSSEINZAEI B , HADIANFARD M J , AGHABARARI B , et al . Pyrolysis of pistachio shell, orange peel and saffron petals for bioenergy production [J ] . Bioresource Technology Reports , 2022 , 19 : 101209 .
ALI I , TARIQ R , NAQVI S R , et al . Kinetic and thermodynamic analyses of dried oily sludge pyrolysis [J ] . Journal of the Energy Institute , 2021 , 95 : 30 - 40 .
MISHRA R K , KUMAR V , MOHANTY K . Pyrolysis kinetics behaviour and thermal pyrolysis of samanea saman seeds towards the production of renewable fuel [J ] . Journal of the Energy Institute , 2020 , 93 ( 3 ): 1148 - 1162 .
SINGH Y D . Comprehensive characterization of indigenous lignocellulosic biomass from northeast India for biofuel production [J ] . SN Applied Sciences , 2019 , 1 ( 5 ): 458 .
MISHRA R K , MOHANTY K . Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels [J ] . Biomass Conversion and Biorefinery , 2018 , 8 ( 4 ): 799 - 812 .
BACH Q V , TRAN K Q , SKREIBERG Ø . Comparative study on the thermal degradation of dry- and wet-torrefied woods [J ] . Applied Energy , 2017 , 185 : 1051 - 1058 .
CHEN D Y , CEN K H , ZHUANG X Z , et al . Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil [J ] . Combustion and Flame , 2022 , 242 : 112142 .
ADHAMASH E , PATHAK R , QIAO Q , et al . Gamma-radiated biochar carbon for improved supercapacitor performance [J ] . RSC advances , 2020 , 10 ( 50 ): 29910 - 29917 .
CHEN Z H , ZHU Q J , WANG X , et al . Pyrolysis behaviors and kinetic studies on eucalyptus residues using thermogravimetric analysis [J ] . Energy Conversion and Management , 2015 , 105 : 251 - 259 .
HU Z Q , CHEN Z H , LI G B , et al . Characteristics and kinetic studies of hydrilla verticillata pyrolysis via thermogravimetric analysis [J ] . Bioresource Technology , 2015 , 194 : 364 - 372 .
夏勇 , 阳宇 , 朱聪 , 等 . 废轮胎热解过程中的动力学与热力学特性及热解油组分分析 [J ] . 低碳化学与化工 , 2023 , 48 ( 4 ): 36 - 45 .
XIA Y , YANG Y , ZHU C , et al . Kinetic and thermodynamic characteristics in scrap tyres pyrolysis process and components analysis of pyrolysis oil [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 4 ): 36 - 45 .
浮爱青 , 谌伦建 , 杨洁 , 等 . 小麦与玉米秸秆的热解过程及其动力学分析 [J ] . 化学工业与工程 , 2009 , 26 ( 4 ): 350 - 353 .
FU A Q , SHEN L J , YANG J , et al . Pyrolysis process and kinetics analysis of corn stalk and wheat straw [J ] . Chemical Industry and Engineering , 2009 , 26 ( 4 ): 350 - 353 .
MOHAMMED H I , GARBA K , AHMED S I , et al . Thermodynamics and kinetics of Doum (hyphaenethebaica) shell using thermogravimetric analysis: A study on pyrolysis pathway to produce bioenergy [J ] . Renewable Energy , 2022 , 200 : 1275 - 1285 .
RAZA M , ABU-JDAYIL B , INAYAT A . Pyrolytic kinetics and thermodynamic analyses of date seeds at different heating rates using the Coats-Redfern method [J ] . Fuel , 2023 , 342 : 127799 .
JAGTAP A , KALBANDE S R . Investigation on pyrolysis kinetics and thermodynamic parameters of soybean straw: A comparative study using model-free methods [J ] . Biomass Conversion and Biorefinery , 2022 : 1 - 12 .
KUMAR M , UPADHYAY S N , MISHRA P K . Pyrolysis of sugarcane (saccharum officinarum L.) leaves and characterization of products [J ] . ACS Omega , 2022 , 7 ( 32 ): 28052 - 28064 .
黄勇 , 靳皎 , 刘丹 , 等 . 二氧化碳参与的粉煤热解-气化工业试验研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 7 ): 111 - 119 .
HUANG Y , JIN J , LIU D , et al . Industrial test study on pyrolysis-gasification of pulverized coal with carbon dioxide [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 7 ): 111 - 119 .
MISHRA R K , MOHANTY K . Thermocatalytic conversion of non-edible neem seeds towards clean fuel and chemicals [J ] . Journal of Analytical and Applied Pyrolysis , 2018 , 134 : 83 - 92 .
郑小峰 , 樊文斌 , 刘娟 , 等 . Fe-mo/ZSM-5催化剂对生物质热解产物分布的影响 [J ] . 当代化工 , 2021 , 50 ( 11 ): 2549 - 2553+2557 .
ZHENG X F , FAN W B , LIU J , et al . Effect of Fe-Mo/ZSM-5 catalyst on the distribution of biomass pyrolysis products [J ] . Contemporary Chemical Industry , 2021 , 50 ( 11 ): 2549 - 2553+2557 .
姚锡文 , 周浩东 , 齐鹏远 , 等 . 氮气和含氧气氛下玉米秸秆热解气化产气规律研究 [J ] . 农业机械学报 , 2024 , 55 ( 5 ): 379 - 385 .
YAO X W , ZHOU H D , QI P Y , et al . Gas production law during corn stalk pyrolysis and gasification under pure nitrogen and oxygen-containing atmospheres [J ] . Transactions of the Chinese Society for Agricultural Machinery , 2024 , 55 ( 5 ): 379 - 385 .
程毅 , 屈一新 , 庄抗 , 等 . 木质纤维生物质热解及中间产物缩合机理研究进展 [J ] . 现代化工 , 2021 , 41 ( 2 ): 28 - 32+37 .
CHENG Y , QV Y X , ZHUANG K , et al . Research progress on mechanism of lignocellulose pyrolysis and intermediates condensation [J ] . Modern Chemical Industry , 2021 , 41 ( 2 ): 28 - 32+37 .
姚磊 , 葛立超 , 赵灿 , 等 . 木质纤维素类生物质热解转化研究进展 [J ] . 动力工程学报 , 2024 , 44 ( 5 ): 665 - 680 .
YAO L , GE L C , ZHAO C , et al . Research progress in pyrolysis and conversion of lignocellulosic biomass [J ] . Journal of Chinese Society of Power Engineering , 2024 , 44 ( 5 ): 665 - 680 .
PHAM C H , LEE J E , YU J , et al . Anticancer effects of propionic acid inducing cell death in cervical cancer cells [J ] . Molecules , 2021 , 26 ( 16 ): 4951 .
CAPORASO N , FORMISANO D , GENOVESE A . Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods [J ] . Critical Reviews in Food Science and Nutrition , 2018 , 58 ( 16 ): 2829 - 2841 .
GUO X F , GU D Y , WANG M , et al . Characterization of active compounds from Gracilarialemaneiformis inhibiting the protein tyrosine phosphatase 1B activity [J ] . Food & Function , 2017 , 8 ( 9 ): 3271 - 3275 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution