浏览全部资源
扫码关注微信
1.青岛科技大学 化工学院,山东 青岛,266042
2.上海航天设备制造总厂有限公司,上海,200245
Received:31 December 2024,
Revised:13 March 2025,
Published Online:28 May 2025,
移动端阅览
刘宏宾,孟伟,于菁等.CO2气氛下xFeS-1催化剂的丙烷氧化脱氢制丙烯性能[J].低碳化学与化工,
LIU Hongbin,MENG Wei,YU Jing,et al.Performance of xFeS-1 catalysts for propane oxidative dehydrogenation to propylene under CO2 atmosphere[J].Low-Carbon Chemistry and Chemical Engineering,
刘宏宾,孟伟,于菁等.CO2气氛下xFeS-1催化剂的丙烷氧化脱氢制丙烯性能[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240521.
LIU Hongbin,MENG Wei,YU Jing,et al.Performance of xFeS-1 catalysts for propane oxidative dehydrogenation to propylene under CO2 atmosphere[J].Low-Carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240521.
采用CO
2
作为弱氧化剂辅助丙烷脱氢不但能够打破其脱氢热力学平衡,还能够拓展CO
2
利用场景。Fe基催化剂是重要的脱氢催化剂,同时具有较高的CO
2
活化性能,但应用于丙烷脱氢时面临产物选择性低、稳定性差等问题。采用配体保护一步水热法制备了
x
FeS-1系列催化剂,通过调节Fe引入量、反应条件调控了催化剂中FeO
x
物种种类和空间分布,采用XRD、UV-Vis和H
2
-TPR等表征方法分析了催化剂结构、FeO
x
物种种类和分散情况以及还原性能等。结果表明,在580 ℃、丙烷质量空速(
<math id="M1"><mi mathvariant="normal">W</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">S</mi><msub><mrow><mi mathvariant="normal">V</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">8</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81418641&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81418617&type=
13.37733269
)6.48 h
-1
、
V
(C
3
H
8
):
V
(CO
2
):
V
(Ar) = 4.50:2.25:23.25和总流量30 mL/min条件下,2FeS-1比浸渍法制备的2Fe/S-1的初始丙烷转化频率提高了一倍,引入CO
2
后3.5FeS-1的初始丙烯选择性达到89
%,且在CO
2
气氛下未见明显失活。在CO
2
气氛下,
x
FeS-1催化剂的催化丙烷氧化脱氢制丙烯性能显著提升,原因在于高分散的骨架Fe提供了更多的活性位点,CO
2
作为弱氧化剂抑制了丙烷深度氧化,提高了产物选择性并抑制了积炭,为优化丙烷氧化脱氢催化剂的设计及扩大其在CO
2
环境中的应用提供了重要的理论支持。
Using CO
2
as a mild oxidant to assist propane dehydrogenation not only breaks the thermodynamic equilibrium of dehydrogenation but also expands the application scenarios of CO
2
utilization. Fe-based catalysts are important dehydrogenation catalysts with high CO
2
activation capability
but facing problems of low product selectivity and poor stability when applied to propane dehydrogenation. A series of
x
FeS-1 catalysts were synthesized by ligand-protected one-step hydrothermal method. By adjusting the Fe loadings and reaction conditions
the types and spatial distributions of FeO
x
species in the catalysts were controlled. XRD
UV-Vis
H
2
-TPR and other characterization techniques were used to analyze the structures
types and distributions of FeO
x
species and reduction properties of catalysts. The results reveal that under reaction conditions of 580 ℃
propane mass hourly space velocity (
<math id="M2"><mi mathvariant="normal">W</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">S</mi><msub><mrow><mi mathvariant="normal">V</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">8</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81418664&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81418653&type=
13.03866673
) of 6.48 h
-1
V
(C
3
H
8
):
V
(CO
2
):
V
(Ar) = 4.50:2.25:23.25 and total flow rate of 30 mL/min
the initial propane conversion frequency of 2FeS-1 is doubled compared to 2Fe/S-1 prepared by impregnation method
and the initial propylene selectivity of 3.5FeS-1 reaches 89% after introducing CO
2
with no significant deactivation observed at CO
2
atmosphere. Under CO
2
atmosphere
the performance of
x
FeS-1 catalysts for propane oxidative dehydrogenation to propylene is significantly improved
because the highly dispersed framework Fe provides more active sites
and CO
2
acts as the mild oxidant to suppress deep propane oxidation to improve product selectivity and mitigate carbon deposition. This provides valuable theoretical support for optimizing the design of catalysts for propane oxidative dehydrogenation and expanding their application in CO
2
-based environments.
ZHANG S H , ZHOU C A , WANG S H , et al . Facilitating CO 2 dissociation via Fe doping on supported vanadium oxides for intensified oxidative dehydrogenation of propane [J ] . Chemical Engineering Journal , 2024 , 481 : 148231 .
张宁 . PtFe/Silicalite-1催化剂的合成、表征及其丙烷脱氢性能研究 [D ] . 沈阳 : 沈阳师范大学 , 2023 .
ZHANG N . Study of the synthesis, characterization and propane dehydrogenation properties of PtFe/silicalite-1 catalyst [D ] . Shenyang : Shenyang Normal University , 2023 .
杨倩 , 聂小娃 , 丁凡舒 , 等 . Pt基催化剂上CO 2 辅助丙烷脱氢的反应机理 [J ] . 石油学报(石油化工) , 2024 , 40 ( 2 ): 482 - 487 .
YANG Q , NIE X W , DING F S , et al . Reaction mechanism of CO 2 -assisted dehydrogenation of propane over Pt-based catalysts [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2024 , 40 ( 2 ): 480 - 489 .
HUANG C M , HAN D M , GUAN L J , et al . Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation [J ] . Fuel , 2022 , 307 : 1 - 13 .
HU B , SCHWEITZER N M , ZHANG G H , et al . Isolated Fe II on silica as a selective propane dehydrogenation catalyst [J ] . ACS Catalysis , 2015 , 5 ( 6 ): 3494 - 3503 .
WU Y L , HAN Z F , YAN X , et al . Effective synthesis of vanadium-doped mesoporous silica nanospheres by sol-gel method for propane dehydrogenation reaction [J ] . Microporous and Mesoporous Materials , 2022 , 330 : 111616 .
杨亮 , 宋庚哲 , 廖多华 , 等 . CO 2 气氛下乙烷氧化脱氢制乙烯催化剂研究进展 [J ] . 精细化工 , 2023 , 40 ( 10 ): 2171 - 2179+2188 .
YANG L , SONG G Z , LIAO D H , et al . Research progress on catalysts for oxidative dehydrogenation of ethane to ethylene under CO 2 atmosphere [J ] . Fine Chemicals , 2023 , 40 ( 10 ): 2171 - 2179+2188 .
LI K X , CAI X , LIU H B , et al . Recent progress on catalysts for propane dehydrogenation in presence of CO 2 [J ] . Reaction Chemistry & Engineering , 2024 , 9 : 1292 - 1312 .
ZHANG X Z , YUE Y H , GAO Z , et al . Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts [J ] . Catalysis Letters , 2002 , 83 : 19 - 25 .
TAKAHARA I , MASAHIRO S . Dehydrogenation of propane over a silicasupported vanadium oxide catalyst [J ] . Catalysis Letters , 2005 , 102 : 201 - 205 .
ZHANG J , TANG X L , YI H H , et al . Synthesis, characterization and application of Fe-zeolite: A review [J ] . Applied Catalysis A: General , 2022 , 630 : 118467 .
YANG Z Y , LI H , ZHOU H , et al . Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation [J ] . Journal of the American Chemical Society , 2020 , 142 ( 38 ): 16429 - 16436 .
BIAN K , ZHANG G H , ZHU J , et al . Promoting propane dehydrogenation with CO 2 over the PtFe bimetallic catalyst by eliminating the non-selective Fe(0) phase [J ] . ACS Catalysis , 2022 , 12 ( 11 ): 6559 - 69 .
李广辉 , 张艳艳 , 王萌 , 等 . 载体对Fe基催化剂CO 2 催化加氢制低碳烷烃性能的影响 [J ] . 低碳化学与化工 , 2024 , 49 ( 12 ): 19 - 26 .
LI G H , ZHANG Y Y , WANG M , et al . Effects of supports on catalytic performances of Fe-based catalysts for CO 2 hydrogenation to light olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 12 ): 19 - 26 .
LIU H , ZHOU J , CHEN T X , et al . Isolated Pt species anchored by hierarchical-like heteroatomic Fe-silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit [J ] . ACS Catalysis , 2023 , 13 ( 5 ): 2928 - 2936 .
YUN J H , LOBO R F . Catalytic dehydrogenation of propane over iron-silicate zeolites [J ] . Journal of catalysis , 2014 , 312 : 263 - 270 .
沈珊珊 , 刘晓辉 , 郭勇 , 等 . Fe的原位掺杂对Pt/Silicalite-1催化丙烷脱氢反应性能的提升作用 [J ] . 物理化学学报 , 2023 , 39 ( 7 ): 79 - 88 .
SHEN S S , LIU X H , GUO Y , et al . Performance enhancement of Pt/silicalite-1 by in situ doped Fe for propane dehydrogenation [J ] . Acta Physico-Chimica Sinica , 2023 , 39 ( 7 ): 79 - 88 .
葛玉英 . 超小纳米颗粒Fe基催化剂的制备丙烷脱氢反应性能研究 [D ] . 北京 : 中国石油大学 , 2022 .
GE Y Y . Preparation of ultrasmall nanoparticle Fe-based catalysts and their catalytic performance in propane dehydrogenation [D ] . Beijing : China University of Petroleum , 2022 .
WU L Z , FU Z Y , REN Z Z , et al . Enhanced catalytic performance of Fe-containing HZSM-5 for ethane non-oxidative dehydrogenation via hydrothermal post-treatment [J ] . ChemCatChem , 2021 , 13 ( 18 ): 4019 - 4028 .
HE J J , ZHANG J , CHEN J W , et al . Re-dispersion of active Zn species on modified S-1 zeolite as an efficient catalyst for direct dehydrogenation of propane [J ] . Microporous and Mesoporous Materials , 2023 , 348 : 112402 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution